2,760 research outputs found

    Myopic loss aversion under ambiguity and gender effects

    Get PDF
    Experimental evidence suggests that the frequency with which individuals get feedback information on their investments has an effect on their risk-taking behavior. In particular, when they are given information sufficiently often, they take less risks compared with a situation in which they are informed less frequently. We find that this result still holds when subjects do not know the probabilities of the lotteries they are betting upon. We also detect significant gender effects, in that the frequency with which information is disclosed mostly affects male betting behavior, and that males become more risk-seeking after experiencing a loss

    Cellular Models for River Networks

    Full text link
    A cellular model introduced for the evolution of the fluvial landscape is revisited using extensive numerical and scaling analyses. The basic network shapes and their recurrence especially in the aggregation structure are then addressed. The roles of boundary and initial conditions are carefully analyzed as well as the key effect of quenched disorder embedded in random pinning of the landscape surface. It is found that the above features strongly affect the scaling behavior of key morphological quantities. In particular, we conclude that randomly pinned regions (whose structural disorder bears much physical meaning mimicking uneven landscape-forming rainfall events, geological diversity or heterogeneity in surficial properties like vegetation, soil cover or type) play a key role for the robust emergence of aggregation patterns bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure

    Local minimal energy landscapes in river networks

    Full text link
    The existence and stability of the universality class associated to local minimal energy landscapes is investigated. Using extensive numerical simulations, we first study the dependence on a parameter γ\gamma of a partial differential equation which was proposed to describe the evolution of a rugged landscape toward a local minimum of the dissipated energy. We then compare the results with those obtained by an evolution scheme based on a variational principle (the optimal channel networks). It is found that both models yield qualitatively similar river patterns and similar dependence on γ\gamma. The aggregation mechanism is however strongly dependent on the value of γ\gamma. A careful analysis suggests that scaling behaviors may weakly depend both on γ\gamma and on initial condition, but in all cases it is within observational data predictions. Consequences of our resultsComment: 12 pages, 13 figures, revtex+epsfig style, to appear in Phys. Rev. E (Nov. 2000

    Universal Scaling of Optimal Current Distribution in Transportation Networks

    Full text link
    Transportation networks are inevitably selected with reference to their global cost which depends on the strengths and the distribution of the embedded currents. We prove that optimal current distributions for a uniformly injected d-dimensional network exhibit robust scale-invariance properties, independently of the particular cost function considered, as long as it is convex. We find that, in the limit of large currents, the distribution decays as a power law with an exponent equal to (2d-1)/(d-1). The current distribution can be exactly calculated in d=2 for all values of the current. Numerical simulations further suggest that the scaling properties remain unchanged for both random injections and by randomizing the convex cost functions.Comment: 5 pages, 5 figure

    A model of fasciculation and sorting in mixed populations of axons

    Full text link
    We extend a recently proposed model (Chaudhuri et al., EPL 87, 20003 (2009)) aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive short-range inter-axon interactions that are identical for all pairs of axons. We generalize the model to adhesive interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle sizes. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyze the interaction between neighboring fascicles.Comment: 19 pages, 13 figures; version accepted for publication in Phys Rev

    The Fractal Properties of Internet

    Get PDF
    In this paper we show that the Internet web, from a user's perspective, manifests robust scaling properties of the type P(n)nτP(n)\propto n^{-\tau} where n is the size of the basin connected to a given point, PP represents the density of probability of finding n points downhill and τ=1.9±0.1\tau=1.9 \pm 0.1 s a characteristic universal exponent. This scale-free structure is a result of the spontaneous growth of the web, but is not necessarily the optimal one for efficient transport. We introduce an appropriate figure of merit and suggest that a planning of few big links, acting as information highways, may noticeably increase the efficiency of the net without affecting its robustness.Comment: 6 pages,2 figures, epl style, to be published on Europhysics Letter

    On Hack\u27s Law

    Get PDF
    Hack\u27s law is reviewed, emphasizing its implications for the elongation of river basins as well as its connections with their fractal characteristics. The relation between Hack\u27s law and the internal structure of river basins is investigated experimentally through digital elevation models. It is found that Hack\u27s exponent, elongation, and some relevant fractal characters are closely related. The self-affine character of basin boundaries is shown to be connected to the power law decay of the probability of total contributing areas at any link and to Hack\u27s law. An explanation for Hack\u27s law is derived from scaling arguments. From the results we suggest that a statistical framework referring to the scaling invariance of the entire basin structure should be used in the interpretation of Hack\u27s law

    Typical properties of optimal growth in the Von Neumann expanding model for large random economies

    Full text link
    We calculate the optimal solutions of the fully heterogeneous Von Neumann expansion problem with NN processes and PP goods in the limit NN\to\infty. This model provides an elementary description of the growth of a production economy in the long run. The system turns from a contracting to an expanding phase as NN increases beyond PP. The solution is characterized by a universal behavior, independent of the parameters of the disorder statistics. Associating technological innovation to an increase of NN, we find that while such an increase has a large positive impact on long term growth when NPN\ll P, its effect on technologically advanced economies (NPN\gg P) is very weak.Comment: 8 pages, 1 figur
    corecore