1,848 research outputs found

    Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate

    Get PDF
    A critical aspect of human-induced climate change is how it will affect precipitation around the world. Broadly speaking, warming increases atmospheric moisture holding capacity, intensifies moisture transports and makes sub-tropical dry regions drier and tropical and mid-to-high-latitude wet regions wetter. Extra-tropical precipitation patterns vary strongly with longitude, however, owing to the control exerted by the storm tracks and quasi-stationary highs and lows or stationary waves. Regional precipitation change will, therefore, also depend on how these aspects of the circulation respond. Current climate models robustly predict a change in the Northern Hemisphere (NH) winter stationary wave field that brings wetting southerlies to the west coast of North America, and drying northerlies to interior southwest North America and the eastern Mediterranean. Here we show that this change in the meridional wind field is caused by strengthened zonal mean westerlies in the sub-tropical upper troposphere, which alters the character of intermediate-scale stationary waves. Thus, a robust and easily understood model response to global warming is the prime cause of these regional wind changes. However, the majority of models probably overestimate the magnitude of this response because of biases in their climatological representation of the relevant waves, suggesting that winter season wetting of the North American west coast will be notably less than projected by the multi-model mean

    'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom

    Get PDF
    Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter

    The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM

    Get PDF
    Recent studies have indicated that ocean circulation damps the atmospheric energy transport response to hemispherically differential energy perturbations, thereby muting the shifts of the Inter-Tropical Convergence Zone (ITCZ). Here, we focus on the potential role of Ekman heat transport in modulating this atmospheric response. An idealized representation of Ekman-driven heat transport (FE) is included in an aquaplanet slab ocean coupled to a gray radiation atmospheric model. We first alter the strength of FE in the control climate by tuning the gross stability of the Ekman layer SE. For a wide range of FE, the total poleward transport of energy remains nearly unchanged, but the ocean transports an increasing share for larger SE. The control climate is then perturbed by adding surface cooling in the Southern Hemisphere and warming in the Northern Hemisphere. The Ekman coupling damps the atmospheric energy transport response, as in previous coupled model experiments with full ocean dynamics. The ratio of the changes in Ekman to atmospheric energy transport is determined by the ratio of the gross stability in the Ekman layer to the atmosphere in the control climate, and is insensitive to the amplitude and location of forcing. We find that an unrealistically large SE is needed to reproduce the ratio of the changes in cross-equatorial oceanic to atmospheric energy transport in fully coupled models. The limited damping effect of Ekman transport highlights the need to examine the roles of deep circulation and subtropical gyres, as well as ocean heat uptake processes

    A decision aid to rule out pneumonia and reduce unnecessary prescriptions of antibiotics in primary care patients with cough and fever

    Get PDF
    BACKGROUND: Physicians fear missing cases of pneumonia and treat many patients with signs of respiratory infection unnecessarily with antibiotics. This is an avoidable cause for the increasing worldwide problem of antibiotic resistance. We developed a user-friendly decision aid to rule out pneumonia and thus reduce the rate of needless prescriptions of antibiotics. METHODS: This was a prospective cohort study in which we enrolled patients older than 18 years with a new or worsened cough and fever without serious co-morbidities. Physicians recorded results of a standardized medical history and physical examination. C-reactive protein was measured and chest radiographs were obtained. We used Classification and Regression Trees to derive the decision tool. RESULTS: A total of 621 consenting eligible patients were studied, 598 were attending a primary care facility, were 48 years on average and 50% were male. Radiographic signs for pneumonia were present in 127 (20.5%) of patients. Antibiotics were prescribed to 234 (48.3%) of patients without pneumonia. In patients with C-reactive protein values below 10 ÎŒg/ml or patients presenting with C-reactive protein between 11 and 50 ÎŒg/ml, but without dyspnoea and daily fever, pneumonia can be ruled out. By applying this rule in clinical practice antibiotic prescription could be reduced by 9.1% (95% confidence interval (CI): 6.4 to 11.8). CONCLUSIONS: Following validation and confirmation in new patient samples, this tool could help rule out pneumonia and be used to reduce unnecessary antibiotic prescriptions in patients presenting with cough and fever in primary care. The algorithm might be especially useful in those instances where taking a medical history and physical examination alone are inconclusive for ruling out pneumonia

    Enzymatic reduction of azo and indigoid compounds

    Get PDF
    A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40°C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N∌1∌,N∌1∌-dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H2O2) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy

    The Global Groundwater Crisis

    Get PDF
    Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged
    • 

    corecore