349 research outputs found
Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model
Myo-inositol hexakisphosphate (IP6), is the main iron chelator in cereals and bread. The aim of this study was to investigate the effect of three commercial baking processes (sourdough, conventional yeast and Chorleywood Bread Making Process (CBP)) on the IP6 content of wholemeal bread, its impact on iron uptake in Caco-2 cells and the predicted bioavailability of iron from these breads with added iron, simulating a mixed-meal. The sourdough process fully degraded IP6 whilst the CBP and conventional processes reduced it by 75% compared with wholemeal flour. The iron released in solution after a simulated digestion was 8-fold higher in sourdough bread than with others but no difference in cellular iron uptake was observed. Additionally, when iron was added to the different breads digestions only sourdough bread elicited a significant ferritin response in Caco-2 cells (4.8-fold compared to the other breads) suggesting that sourdough bread could contribute towards improved iron nutrition
Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem
Recent changes in the coffee agroecosystem of Costa Rica were used to study the mechanism of biodiversity loss in transforming agroecosystems, focusing on the ground-foraging ant community. Coffee farms are being transformed from vegetationally diverse shaded agroforestry systems to unshaded coffee monocultures. We tested the hypothesis that the high-light environment and lack of leaf litter cover in the unshaded system are the determinants of the differences in ground-foraging ant diversity. Four treatments were established within the light gaps of a shaded plantation: shade, leaf litter, shade plus leaf litter, and a control (no shade or leaf litter added). Ants were sampled using tuna fish baits and light and temperature were measured. Shade and leaf litter had a significant effect on the ant fauna but probably for indirect reasons having to do with species interactions. In both shade treatments, Solenopsis geminata , the tropical fire ant, decreased significantly while the other species increased. The possibility that the physical factor changes the nature of competitive interactions between the most abundant species is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47696/1/442_2004_Article_BF00333736.pd
Nurturing Community: Using Community-Based Service Learning In Biopharmaceutical Engineering Education.
The conservation value of human-modified landscapes for the world's primates
Land-use change pushes biodiversity into human-modified landscapes, where native ecosystems are surrounded by anthropic land covers (ALCs). Yet, the ability of species to use these emerging covers remains poorly understood. We quantified the use of ALCs by primates worldwide, and analyzed species' attributes that predict such use. Most species use secondary forests and tree plantations, while only few use human settlements. ALCs are used for foraging by at least 86 species with an important conservation outcome: those that tolerate heavily modified ALCs are 26% more likely to have stable or increasing populations than the global average for all primates. There is no phylogenetic signal in ALCs use. Compared to all primates on Earth, species using ALCs are less often threatened with extinction, but more often diurnal, medium or large-bodied, not strictly arboreal, and habitat generalists. These findings provide valuable quantitative information for improving management practices for primate conservation worldwide
Nature-inspired heuristics for the multiple-vehicle selective pickup and delivery problem under maximum profit and incentive fairness criteria
This work focuses on wide-scale freight transportation logistics motivated by the sharp increase of on-line shopping stores and the upsurge of Internet as the most frequently utilized selling channel during the last decade. This huge ecosystem of one-click-away catalogs has ultimately unleashed the need for efficient algorithms aimed at properly scheduling the underlying transportation resources in an efficient fashion, especially over the so-called last mile of the distribution chain. In this context the selective pickup and delivery problem focuses on determining the optimal subset of packets that should be picked from its origin city and delivered to their corresponding destination within a given time frame, often driven by the maximization of the total profit of the courier service company. This manuscript tackles a realistic variant of this problem where the transportation fleet is composed by more than one vehicle, which further complicates the selection of packets due to the subsequent need for coordinating the delivery service from the command center. In particular the addressed problem includes a second optimization metric aimed at reflecting a fair share of the net benefit among the company staff based on their driven distance. To efficiently solve this optimization problem, several nature-inspired metaheuristic solvers are analyzed and statistically compared to each other under different parameters of the problem setup. Finally, results obtained over a realistic scenario over the province of Bizkaia (Spain) using emulated data will be explored so as to shed light on the practical applicability of the analyzed heuristics
Prima facie reasons to question enclosed intellectual property regimes and favor open-source regimes for germplasm
In principle, intellectual property protections (IPPs) promote and protect important but costly investment in research and development. However, the empirical reality of IPPs has often gone without critical evaluation, and the potential of alternative approaches to lend equal or greater support for useful innovation is rarely considered. In this paper, we review the mounting evidence that the global intellectual property regime (IPR) for germplasm has been neither necessary nor sufficient to generate socially beneficial improvements in crop plants and maintain agrobiodiversity. Instead, based on our analysis, the dominant global IPR appears to have contributed to consolidation in the seed industry while failing to genuinely engage with the potential of alternatives to support social goods such as food security, adaptability, and resilience. The dominant IPR also constrains collaborative and cumulative plant breeding processes that are built upon the work of countless farmers past and present. Given the likely limits of current IPR, we propose that social goods in agriculture may be better supported by alternative approaches, warranting a rapid move away from the dominant single-dimensional focus on encouraging innovation through ensuring monopoly profits to IPP holders
Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels
Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large
Improving pulse crops as a source of protein, starch and micronutrients
Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement
Utilizing associational resistance for biocontrol: impacted by temperature, supported by indirect defence
201
- …
