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Abstract—This work focuses on wide-scale freight transporta-
tion logistics motivated by the sharp increase of on-line shopping
stores and the upsurge of Internet as the most frequently utilized
selling channel during the last decade. This huge ecosystem of
one-click-away catalogs has ultimately unleashed the need for
efficient algorithms aimed at properly scheduling the underlying
transportation resources in an efficient fashion, especially over
the so-called last mile of the distribution chain. In this context the
selective pickup and delivery problem focuses on determining the
optimal subset of packets that should be picked from its origin
city and delivered to their corresponding destination within a
given time frame, often driven by the maximization of the total
profit of the courier service company. This manuscript tackles
a realistic variant of this problem where the transportation
fleet is composed by more than one vehicle, which further
complicates the selection of packets due to the subsequent need
for coordinating the delivery service from the command center. In
particular the addressed problem includes a second optimization
metric aimed at reflecting a fair share of the net benefit among
the company staff based on their driven distance. To efficiently
solve this optimization problem, several nature-inspired meta-
heuristic solvers are analyzed and statistically compared to each
other under different parameters of the problem setup. Finally,
results obtained over a realistic scenario over the province of
Bizkaia (Spain) using emulated data will be explored so as to
shed light on the practical applicability of the analyzed heuristics.

I. INTRODUCTION

Technological advances on the security and privacy of
electronic commerce and the subsequently better appreciation
of the use of bank details in Internet have lately caused
an unprecedented blossom of on-line stores and shopping
websites, allowing users to remotely purchase almost any good
and have it delivered at their place within deadlines of their
convenience. The proliferation of hand devices such as tablets
and smart-phones, along with the improvement of mobile
Internet access has also favored the ubiquity of users when
exploring and eventually utilizing such on-line stores. Indeed,
according to the research report published in [1] the parcel
delivery industry is projected to grow 9 % annually to more
than 343 billion USD by 2020, with a 49 % penetration in
mobile phones by 2017. Such figures are propelled by a deeper
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digitalization of this sector, which reduces costs and permits
to aggregate auxiliary yet valuable services for the end user.

From the perspective of logistics the noted increase of the
number and rate of on-line purchases calls for new meth-
ods aimed at efficiently allocating corporate transportation
resources at different levels of the distribution chain [2]. At
times where cost efficiency lies at the core of all processes
within a service company, decision makers target at ensure
that all their assets and tools are used efficiently, when
needed and towards protecting the economical sustainability
of the company by reducing costs to their minimum. This is
the rationale why many problems in delivery logistics adopt
economical profitability — computed as the difference between
net incomes and the sum cost of the followed route(s) — as
their main criteria for optimality [3], besides other objectives
that impact on revenues as well (e.g. minimum completion
time, inconvenience of the client or the number of vehicles).

When such economical terms involve a personal sacrifice
of the transporter (e.g. long periods off his/her place), fairness
should enter the picture as a criterion to be necessarily
addressed in the scheduling of delivery resources. In ground
logistics rewards per packet delivered in time are often the
mechanism to ensure a fair share of the price for a certain
service: the more preferential a packet is to be delivered, the
higher the reward will be, which usually comes along with
more stringent deadlines and/or distances to be driven for
its successful delivery. This is often the case for autonomous
transporters, whose salary comes in general as a proportional
share of these rewards [4]. However, when dealing with
relatively large transport companies this approach does not
hold: the money paid for the transport service is collected by
the company, from which base salaries and incentives for its
personnel are retrieved. Such extra payments aim at fairly com-
pensating employees depending on their performance when
working for the company. Among the very diverse criteria
adopted for establishing such primes (most depending on the
individual price of the delivered good) the overall distance
traveled by the transporter can be deemed as one of the most
objective rewarding schemes. By taking into account fairness
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within the operations of a transport company decision makers
may trade the maximization of the revenue of the overall
company for the satisfaction of the staff with respect to the
acknowledgments of their individual performance and results
which, despite its relevance in many operational and relational
aspects, is very rarely addressed in practice.

This being said, this manuscript gravitates on the selective
pickup and delivery problem, a relaxed version of the static
pickup and delivery problem [5] where the command control
of the transport company must optimally allocate the corporate
fleet to a set of pickup and delivery services, part of which
is to be processed and completed within varying time frames.
The optimization goal is to determine the subset and sequence
of packets to be picked and delivered by each vehicle of
the fleet so as to maximize a measure of fitness for the
transport company. While most of the related literature focuses
on different approximations of the same profit-maximizing
statement of the problem [6], [7], [8], [9], [10], [11], the
approach taken in this paper considers fairness as a second
criteria postulated to clash with the overall profit of the
company. In other words, if no objective criteria for a fair
share of the profit were applied, the members of the staff
could be granted with unfairly high commissions disregarding
whether e.g. their traveled distances are comparable to those
of other colleagues having delivered less profitable packets.
While a number of contributions have hitherto gravitated on
algorithmic derivations for other multi-objective formulations
of the pickup and delivery problem, to the knowledge of the
authors they all focus on operational aspects of the delivery
service such as route length, response time, vehicle capacity
and workload [12], [13], thus neglecting the social side of the
company in regards to the fair distribution of its net profit.

This work focuses on mathematically modeling the above
paradigm as a bi-objective optimization problem, for whose
computationally efficient resolution a set of nature-inspired
solvers will be proposed and compared to each other: a
Non-Dominated Sorting Genetic Algorithm (NSGA-II, [14])
and multi-objective versions of Harmony Search [15], Firefly
Algorithm [16] and Ant Colony Optimization [17]. All these
algorithms will be compared to each other in several synthetic
scenarios by resorting to multi-objective performance metrics
and hypothesis tests. Finally, an emulated yet realistic scenario
over the province of Bizkaia (Spain) will be designed and
discussed to validate the practicality of the analyzed heuristics.

The rest of the manuscript is structured as follows: Section
II introduces the mathematical notation of the problem and for-
mulates it formally, whereas Section III describes in detail the
proposed multi-objective algorithms and their modifications to
tackle the problem. Next Section IV discusses the simulation
benchmark and finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In reference to Fig. 1 we assume a packet delivery company
employing a staff of IV different courier agents, which are in
charge for picking up and delivering goods from their origin
to their destination within an associated time window. Such a

time window spans from the very moment the item at hand is
made available for pickup in a certain location to a maximum
delivery deadline. Mathematically we will define the P-sized

set of available items as P = {P,}}_,, where each item
compounding this set is given by
Pp = {T;7L;anZLaL]J;7Rp}7 (1)

with TpT (Tzf) denoting pickup (delivery) times; L1T7 (Li)
pickup (delivery) locations; and 12, > 0 the reward associ-
ated to the successful delivery of the item to its destination
in time. Locations are assumed to be drawn from a finite
set of cities £ with size |£|. A route followed by agent
n € {1,...,N} can be casted as a vector of M,, integers
LE = {L>1 22 .  L>Mn} with LP™ € L representing
the city visited by courier agent n in m-th order within his/her
M,,-length schedule. Depending on the time 7™ at which
agent n effectively arrives at the m-th city along the schedule
he/she will be able to pick up items for their delivery provided
that 1) they have not been already collected by any other
courier agent; and 2) T < TJ < T2™, ie. the item is
available within the time frame during which the courier stays
in the city. It is assumed that when dealing with concurrent
arrivals items are picked up by the courier that first reached
the city at hand.

Item
time

Pick up after Tue 16:30 @ 2
Deliver before Wed 12:15 @ 3
Reward Rq:100 m.u.

Fig. 1. Problem setup for N = 3 agents and |£| = 7 cities, detailed
information associated to item P; = {Tue 16:30, 2, Wed 12:15, 3,100}, and
example of the schedule followed by agent n = 1, who does not pick up and
deliver packet P4 due to the long travel time between cities 3 and 4.

The overall set of pickup and delivery routes followed by
the N courier agents, denoted as {L> 1} = L™, effectively
delivers a subset P(L>) C P of the overall set of available
items P. This subset can be expressed as the union of the
item sets processed by each agent deployed in the scenario at

hand. Mathematically:

P(L?)=P(LT)UP(LS)U...UP(LY), 2)
where

PLY)={pe{l,....P}: LT e Ly, L} €L, (3
To™ <Tland T <T1if To™ = L1, (4
o™ <Tu™< TJ forany n’ #n}, (5
where the constraint imposed in (5) reflects that no other
courier n’ # n should have arrived at the pickup location of

the item at hand before courier n. With this notation in mind
the total income received by the courier company as a reward
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for delivering the subset of items P (L") will be given, in
monetary units (hereafter m.u.), by

N
") =3 N R, -HpeP(LE)} [mul,  (6)

n=1peP

where I(-) is an auxiliary function taking value 1 if the con-
dition in its argument is true and O otherwise. The net income
achieved by the courier company results from subtracting the
travel costs incurred by each agent when driving from one
location to another within his/her route. If the distance from
location L,, to L,, is denoted as d,,,, [km] and costs
are compiled as a generic quantity per kilometer Cy,, [m.u.]
(aggregating e.g. fuel consumption and tire wear costs), the
net income is thus expressed as

N M,
)= Y > Crmdpem o, (D)

n=1m=2

In(LP) =

which embodies the first objective considered in our problem
formulation. This net income is collected by the courier
company, from which incentives to the agents are computed
proportionally depending on the contribution made by each
agent to the corporate profit. The ratio ¢, € R|0, 1] given by

Yper Rol{p € P(LE)} - 3050
Ix(LP) ’

provides a quantitative estimation of the aforementioned con-
tribution of agent n € {1,..., N} to the net profit of the
company, such that the incentive to this staff member might be
computed proportionally as o< ¢, Ix(L") [m.u.]. However, this
ratio is uncoupled with respect to several factors that should be
taken into account by the company in order to avoid unfairly
distributing incentives among the personnel. In particular we
focus on the distance driven by the agent to collect items along
his/her route, which might not be related at all to the reward
R, associated to such goods. This issue is particularly involved
in those situations where traveled distances are long enough
to require overnight work shifts. In this hypothesized scenario
it is deemed mandatory to enforce an incentive policy that
balances between the business profitability of the company
and a fair share of the profit among its employees.

To numerically assess the difference between the distance-
aware distribution of the profit and the incentive policy given
by factors {¢,})_;, a set of distance-aware ratios {\,}N_;
can be computed based on the total distance traveled by agent
n when following route LE, yielding

n?

M,
n d >,m-1 y>,m
)\n - Zm—? /Ln L c R[07 ].], (8)

S Y d

from which the difference between policies enforced by

CkmdLD m-l g B.m

Cn =

>,m-1 >,m
L5 ™ L%

{¢u 3N, and {\,})_, can be quantified as the relative mean
error (RME) between both vectors, given by
- 100 G~ [G6n =
RME(L™) %], 9)
Z [Cnl + \A |

n=1

where the case (,, = A, is forced to yield a value of 0. The
problem addressed in this paper seeks a group of route sets
{L£>*FE | for the agents of the courier company different
albeit optimally balancing — in the Pareto sense — the trade-off
between the maximization of the net income of the company
and the fairness in the distribution of incentives among its staff
members. In mathematical notation,

(LR K = arg [max Iy(L"), minRME(L>)], (10)

subject to a maximum time horizon 73’ m\ —L5Mn < Thas
for all agents n € {1,...,N}. It should be clear that in the
above problem formulatlon an interesting interaction between
both objectives arise in regards to the sequence of cities
visited by every courier agent. It is not a priori straightforward
to decide whether a service should be processed and hence
resources — namely, an agent — allocated to pick up and
deliver the item in question: not only the associated reward Iz,
should be evaluated, but also the time frame within which the
service should be accomplished, the commitments and relative
distance of agents to the locations involved in the service and
the fairness of their assigned incentives with respect to their
already traveled distances. Also important is to observe that
not all items may be delivered to their destination as a result
of the service selectiveness assumed for the problem (as in
e.g. [7] and references included therein).

Despite the relaxation with respect to its non-selective
counterpart, the complexity of the above problem requires the
adoption of approximate heuristic solvers that sacrifice opti-
mality of their produced solutions for an enhanced efficiency
of their search procedure. In this regard 4 different nature-
inspired solvers will be next described and compared to each
other, all relying on observed behaviors in Nature.

ITII. BIO-INSPIRED MULTI-OBJECTIVE SOLVERS

In what follows different algorithms for multi-objective
optimization problems will be thoroughly described. They all
share a similar solution encoding approach to represent the
sequence of cities visited by each courier, with times taken
to traverse from one location to another resolved during the
fitness calculation. In particular the k-th solution L™ (k) to
the problem is represented by integers, which are in turn the
index of every visited city in the set £. Therefore, the solution
vector can be unfolded as

L" (k) = {LY (k), L5 (K), ..., (11)

namely, as the concatenation of the labels of the cities visited
by each user along his/her proposed schedule. When needed,
the heuristic operators governing the search process of the
considered heuristics will be modified with respect to their
nominal definition so as to account for the particular structure
of the encoding strategy.

LY (k)},

A. Non-Dominated Sorting Genetic Algorithm (NSGA)

The first heuristic approach considered in our benchmark is
the Nondominated Sorting Genetic Algorithm (NSGA) widely
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utilized for tackling multi-objective problems stemming from
different disciplines. In essence this evolutionary solver hinges
on a selection strategy that jointly considers both the Pareto
optimality and spread of produced solutions along iterations.
To this end candidate vectors are ranked according to whether
they are dominated by other individuals from the pool of
available solutions. Diversity among non-dominated solutions
is ensured by a second criterion that allows sorting individuals
within a given dominance rank in decreasing order of the
distance to their closest neighbors along each of the objectives
(crowding distance). If we denote as R(k) € N and CD(k) the
non-dominance rank and crowding distance of solution L” (k),
we will prefer solution L™ (k) to L™ (k') if 1) R(k) < R(K');
or 2) if R(k) = (k') and CD(k) > CD(K'). This case is
often expressed as k < k.

Algorithm 1: NSGA approach.

Input : Population size P, number of iterations Z,
mutation probability P,, selection, crossover,
mutation and replacement operators.

Output: Approximated Pareto set {L> (k) kafA

Generate initial population of P candidate solutions

Set iteration counter ¢t = 1

while it <7 do

Generate a new offspring population from the pool of

individuals using the selected selection strategy and

crossover operator with probability P,

5 Apply mutation operator with probability P, to each

produced offspring

6 Evaluate Ix(-) and RME(-) for the offspring

7 Combine newly produced individuals and the

previous population

8 Identify ranks {R(k)} and compute crowding

distances {CD(k)} over the combined population

9 Sort and choose P individuals based on

non-dominance ranking and crowding distance (<)

AW N -

10 end
11 The estimated Pareto front { L™ (k) fi"’fz* is given by the
individuals with (k) = 1 in the population

Genetic operators for crossover and mutation abound in the
related literature. In our case we opt for uniform crossover, by
which each produced offspring is the result of a uniformly ran-
dom, component-wise mating between two selected parents.
It should be noted that as opposed to other mating strategies
such as N-point crossover, this operator can be applied in
its naive form at no risk of mixing genotype corresponding
to schedules of different courier agents. Likewise, uniform
mutation is chosen so as to imprint genetic differences between
mating individuals and their descendants. Parents are selected
by means of a binary tournament procedure where pairwise
matches are resolved based on Pareto dominance.

B. Non-Dominated Sorting Harmony Search (NSHS)

The second multi-objective solver considered in this study
is similar to NSGA except for the heuristic operators that

control its search procedure. In this case genetic crossover and
mutation operators (lines 4 and 5 in Algorithm 1) are replaced
with those of Harmony Search [15], a population-based meta-
heuristic optimization algorithm that inspires from the music
composition process observed in music bands to solve complex
optimization problems in diverse application scenarios [18].
Despite its apparent similarity to other evolutionary schemes
such as Evolution Strategies, there are subtle differences in
the definition of the HS operators aimed at emulating the
behavior of musicians when improvising new harmonies under
an aesthetic measure of musical quality:

o The Harmony Memory Considering Rate is controlled by
a parameter HMCR € R[0,1] that establishes the proba-
bility that the new value for a variable L2 (k) is drawn
uniformly at random from the discrete set

(LE™(1), .. L8 ™ (k — 1), L5 ™ (k + 1),..., LS (HM)}

i.e. from the values taken by the same variable in the rest
of candidate solutions in the HM-sized population (often re-
ferred to as Harmony Memory). This can be indeed regarded
as a probabilistically driven uniform crossover operator with
polygamy which, as claimed in [19] and rebutted in [20],
[21], resembles an instance of (u+ A) Evolution Strategies.
o The Pitch Adjustment Rate is again driven by a probabilistic
parameter PAR € R[0, 1], which sets the probability that
the value of any given optimization variable L>- (k) is
replaced by any of its neighboring values in the variable
alphabet, with equal probability. While this operator could
be deemed as a sort of random mutation with restricted
support, it is in the implicit definition of neighborhood
where the novelty of this local search strategy resides: values
along the alphabet should be sorted depending on their
expected influence of the fitness function to be optimized.
This, however, comes along with a penalty in regards to the
capability of the algorithm to explore globally the search
space at hand, which is often circumvented by adding a
third operator (coined as Random Selection Rate [22]).

Considering these differences a multi-objective approach of
the HS algorithm can be built in a straightforward manner
by replacing the standard plus replacement method of the
original algorithm (i.e. survival of the best HM individuals
among the newly produced ones and those remaining from
the previous iterations) with the NSGA criterion based on non-
dominance ranking and crowding distance explained in the
previous section. The resulting algorithm, hereafter labeled as
NSHS, is completed by adapting the concept of neighborhood
of any city label in £ as the labels corresponding to the closest
cities to the one to be mutated. Finally, the proposed NSHS
approach can be described as in Algorithm 1, replacing lines
4 and 5 with the aforementioned HMCR and PAR operators.

C. Non-Dominated Sorting Firefly Algorithm (NSFA)

Similarly to how the HS heuristic is adapted to deal with
multi-objective problem, a non-dominated sorting strategy
can be also applied to the Firefly Algorithm (FA), a solver
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from Swarm Intelligence that emulates the flashing behavior,
attraction and relative movement between these insects [16].
Attractiveness is the result of the brightness (fitness) perceived
by every firefly from the rest of individuals in the swarm,
which in turn is subject to their mutual distance. It has been
widely applied to problems in many sectors [23].

Algorithm 2: NSFA algorithm.

Input : Swarm size S, P,, maximum iterations Z.
Output: Approximated Pareto set {L> (k) kKiSfA
Generate initial swarm of S fireflies (candidate solutions)
Set iteration counter it = 1
while it <7 do
for k=1:S do
for k’=k+1:S do
Compute Dy (k, k") in Expression (13)
if £ < k' then

‘ Move firefly k' towards k as per (12)
else

‘ Move firefly k towards k' as per (12)
end
Reevaluate objectives Iy (-) and RME(+) for
the evolved firefly (either k or k')

o X NN R W N -

e
N =D

13 end

14 end

15 end

16 The Pareto front estimation {L> (k)}+"* is given by the
fireflies with (k) = 1 remaining in the swarm

At this point it is worth mentioning the work in [24], which
deals with the application of FA to a vehicle routing problem
with time windows that differs from our approach in several
aspects: 1) it does not consider selectivity of clients (items) in
the design of routes; and 2) it aims at minimizing the number
of routes and traveled distance by blending both objectives
together in a single metric definition. However, our proposed
non-dominated FA scheme shares algorithmic similarities with
the FA in the above reference, with slight differences:

o A proper definition of distance suited to the problem at
hand must be defined in order to measure the phenotypical
differences between two candidate solutions (fireflies). At-
tractiveness varies exponentially with such a distance, and
so does the amount by which the attracted firefly moves
towards its attracting peer. In this regard we embrace the
Hamming Distance — namely, the number of disagreements
between two sets — proposed in [24] to measure the distance
between two fireflies & and &’ within the swarm. However,
differences are computed in terms of the successfully deliv-
ered goods associated to the schedules represented by the
fireflies; if P, (k) C P and P, (k') C P denote such sets
of delivered items for solutions k and k&’ in the swarm, the
movement from & to k' will be given by

L>™(k)  with prob. 1-Dy (k, k),
LE™(k") with prob. (1-P,)Dg(k, k'),
rand(1, |£]) with prob. P, Dy (k, k'),

L™ (k)= (12)

where P, € R[0, 1] serves as a mutation probability aimed
at simulating the random movement of fireflies; rand(a, b)
is the realization of a discrete random variable with support
Nla, b] (with a < b); and Dy (k, k') is defined as

Speps  Up € Po(B)Ip € Py (k)
Pl
where P}, =P (k) UP, (k).
« Since we deal with a multi-objective problem, light intensity

is measured in terms of non-dominance rank and crowding
distance, as in the NSGA and NSHS approaches.

Dy (k, k') =

. (13)

Algorithm 2 summarizes the NSFA solver resulting from the
above modifications. It should be noted that while for NSGA
and NSHS the number of fitness evaluations is given by the
product of Z times the size of the pool of candidate solutions
(P and HM, respectively), in NSFA this number increases
up to ZS(S — 1)/2 due to the reevaluations done for every
pairwise comparison in the inner loop of every iteration, which
is of utmost relevance for a fair comparison between heuristics.

D. Multi-objective Ant Colony Optimization (MACO)

The last nature-inspired solver considered in this study is an
adapted version of the well-known Ant Colony Optimization
algorithm [17], a solver from the field of Swarm Intelligence
that imitates the foraging behavior of ant colonies when
seeking sources of food to search good paths over graphs
defining an optimization problem. The movements of ants
through the graph emulates the stigmergy mechanism observed
in ant colonies by which pheromone trails are deposited by
those members of the colony that found good paths to food
sources. Deposited pheromone evaporates along time provided
that it is not reinforced by successive ants traversing the path.

As shown in Figure 2, N graphs of dimensions M,, X |L]
nodes are constructed to model the space of possible trip
schedules that every courier agent can follow. Every iteration
a colony of K ants traverse every such graph, each tracing a
possible sequence of cities visited by the agent at hand. While
colonies operate independently of each other over uncoupled
solution graphs, it is in the computation of the overall fitness
given by In(-) and RME(:) where paths found by all ant
colonies are assembled and their joint quality is evaluated.

Since we deal with a multi-objective optimization problem,
pheromones are deposited exclusively by those ants whose
trajectories compose a Pareto-dominant set of schedules in the
iteration at hand. The pheromone update process is driven by

’
m,m’,n

Tﬁ"m/’n — A =p)y™ "+

K
p>_CD(R)I(LE™ (k) =DI(LE ™ (k) =1)I(R(k) =1), (14)
k=1

where the pheromone deposited in the transition from city [ at
sequence index m to city I’ at m’ for agent n is reinforced —
at a evaporation rate p € R[0, 1] — by the sum of the crowding
distance of those Pareto-dominant solutions containing such
a transition in the tour followed by courier n. This updated
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pheromone is then used to probabilistically guide ants in
subsequent iterations of the MACO solver, using the inverse of
the distance between cities [ and I’ (i.e. 1/d; /) as the heuristic
contribution to the probabilistic transition rule among nodes.
Two exponential parameters o € R and 8 € R[1, 00) permit
to tune the trade-off between the heuristic value and the trail
intensity in the probabilistic transition between graph nodes.

4 5
O O |:> {In(k)}32,
T o0 2
le(k)}%:l 5& {CD(k)} iy
O =R
ow
28
=<
I g Pheromone
L2> (k‘)}i—l gé update and
= 23 probabilistic
N g-? transition rule
~ o E g computation
=
=2
S - ==
L?(k)}i—l == Upd.a'Fed
- _ -7 transition
R probabilities

Fig. 2. Schematic diagram of the considered MACO heuristic with K = 2
ants per colony for a problem with N = 3 agents visiting M,, = 5 cities.

IV. EXPERIMENTAL RESULTS

In order to shed light on the comparative performance of the
considered multi-objective algorithms, computer experiments
have been carried out over synthetically generated problem
instances involving different combinations of |£| (number
of cities) and N (number of agents). The scope is placed
on verifying how the designed algorithms behave when the
complexity of the search space characterizing the problem
increases in terms of 1) the cardinality of the involved
optimization variables; and 2) the interactions and conflicts
derived from coordinating a higher number of vehicles/agents
deployed over the scenario. For this reason the simulated
instances are labeled as {N, ||}, spanning the set of cases
given by the Cartesian product {5, 10,20} x {20,40,80}. In
all cases a maximum time 7T),,, equal to one weeks (168
hours) is imposed with goods being continuously generated
over this time frame to avoid biasing the obtained results with a
potential shortage of items with respect to the value of N under
consideration. In this regard the generation of items follows an
exponential distribution with average inter-arrival time equal
to 20 minutes, pickup and delivery locations L; and Li drawn
at random from £, and delivery deadlines calculated as

dry g

TH=T) +&- ,
P P P Vp

15)
where V), denotes the average speed of the vehicle in the route
from L] to L}; and &, € R[¢y,£L] (with {5 < £1) denotes
a priority factor: the delivery of items with {i < &, = ¢, is
less urgent than that of services with £ ~ £, <, as for the
latter no flexibility is granted to accommodate other deliveries
between the pickup and delivery of the p-th item. The priority
factors &, are assumed to follow an uniform distribution over
its allowed support, whose values are drawn independently of

their value of d LI By forcing a reward inversely propor-
tional to §, we emulate the realistic situation where rewards
and traveled distance are statistically independent from each
other, while maintaining a tight coupling between the priority
of a service and its associated reward R,. In particular we
will model the reward as 100 - (§1, + &g — §p) [m.u.], with

&g =1 and &, = 5, from which agents receive their incentive

depending on the distribution policy adopted by the company.

For simplicity and without loss of generality V), will be set

fixed to 80 km/h, with cities distributed uniformly at random

over a square area of 1000 x 1000 km. In all simulated cases

M, is set to 30 Vn € {1,..., N}. Fuel costs of 0.1 m.u. per

km are also included in the cost model.

Comparison between multi-objective heuristics will be done
based on two different quality indicators:

« Effective number of points in the estimated Pareto front by
each algorithm, which are given by those archived solutions
with R(k) = 1 once the multi-objective solver at hand
has finished iterating. In the algorithmic explanations of
Section III this indicator has been labeled as Ky, with
0 € {NSGA,NSHS,NSFA,MACO}.

« Hypervolume indicator, which quantifies the relative Pareto
volume (area in problems with two objectives) between an
estimated Pareto front and a reference point {/3, RME®}.
In our particular max — min optimization problem the hy-
pervolume will be computed as the ratio between the area
enclosed by the estimated Pareto front with respect to
reference point {0,100%} and the area enclosed between
{0,0} and { R4z, 100%}, with R,,,. given by the highest
reward attained over all algorithms and experiments.

TABLE I
PARAMETER SETTING FOR THE ALGORITHMS IN THE BENCHMARK
Description Algorithm Parameter [ Value
Replacement strategy ALL Plus replacement
Population size NSGA, NSHS, MACO | P, HM, K 40
P NSFA S 20
N o NSGA P 0.7
Crossover probability NSHS HMCR 06
NSGA P, 0.1
Mutation probability NSHS PAR 0.15
NSFA P, 0.1
Number of iterations NSGA, NSHS, MACO Z 300
NSFA T 65

Since all algorithms in the benchmark are controlled by
stochastic processes, the above performance measures are
computed for 20 independent Monte Carlo experiments for
every {N,|L|, algorithm} combination, after which a non-
parametric Wilcoxon rank sum test will be run between
every pair of algorithms to verify the statistical significance
between their performance differences. To further ensure a
fair comparison, the number of iterations Z of each heuristic
is adjusted so as to yield the same number of fitness function
evaluations. Table I summarizes the parameters used for the
solvers, which have been optimized off-line over a value grid.

We start our discussion by Table II, which shows the
statistics (mean + standard deviation) computed for the hy-
pervolume indicator and the number of points estimated by
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TABLE II
MEAN = STD STATISTICS OF THE PERFORMANCE INDICATORS COMPUTED OVER 20 MONTE CARLOS FOR EVERY ALGORITHM AND SCENARIO

{N |£|} NSGA NSHS NSFA MACO
’ Kysca HVysca Kysus HVuysus Kuysra HVysra Kyaco HVuaco

{5, 20} 20.1 + 1.2 855 + 1.1 224 + 4.8 86.8 + 3.8 122+ 14 | 844 £25 202 +£52 | 865 £ 27
@« {5, 40} 214 + 25 79.3 + 2.1 244 + 35 81.8 + 3.5 135+ 24 | 82.1 £32 | 226 +43 843 + 1.8
EJ {5, 80} 235+24 | 642 £33 232 +34 | 658 £5.1 14.1 £ 4.1 68.5 + 2.1 243 4+29 | 70.7 £ 1.5
"é {10, 20} 22.8 £33 80.1 £ 1.9 | 305 + 33 813 + 4.4 175 £ 1.6 824 +46 | 288 +£3.2 | 835 £ 1.1
5 {10, 40} 273 +£22 | 76.5 + 3.1 325 +27 | 798 £4.1 16.8 + 1.9 80.5+52 | 292 +34 | 825+ 2.1
E {10, 80} 338+ 14 | 556 +43 356 £ 23 | 576 £ 24 16.1 £ 2.4 | 59.7 + 3.1 372 +£ 1.3 61.5 + 42
E‘ {20, 20} 30.2 £ 4.7 74.7 £ 4.1 322 +42 | 759 +£22 18.8 £ 2.5 775 £ 53 348 + 2.1 795 £ 22
n {20, 40} 364 +£32 | 583 +52 | 346 +4.1 61.1 £ 34 17.5 £ 3.1 63.5 + 4.1 352 +3.6 | 688 +54

{20, 80} 385 £ 1.1 50.1 £82 | 351 +19 | 588 +£5.6 155 £ 19 | 625+ 45 359 +£3.0 | 655+ 33
K] {5, 70} 223 +22 | 76.6 £4.0 19.1 43 | 748 £ 3.2 152+ 18 | 725 £52 | 289 + 3.1 740 +£ 4.3
3‘: {10, 70} 275+ 26 | 503 +£43 214 +32 | 522 +£52 13.1 £ 27 | 535 +£49 | 294 + 3.8 579 + 3.9
/q {20, 70} 31.8 +28 | 465+ 28 20.3 + 3.1 497 £ 2.8 121 £ 24 | 503 £56 | 31.3+29 | 53.1 £40

every algorithm averaged over 20 independent experiments run
over each simulated scenario. Several patterns can be found in
this table: to begin with, the cardinality of the inferred Pareto
optimal front and the hypervolume improve with the number
of agents (V) and cities (£) for all algorithms. The reason
behind this unexpected behavior is the fixed size of the square
grid over which cities are randomly located: as |L£| increases
the relative distance between cities decreases, and so does the
transit time of the courier agents. Furthermore, the availability
of more agents allows for a higher flexibility in their schedul-
ing along the commit time 7,,,, which ultimately yields
better performance figures in regards to hypervolume and the
cardinality of the estimated front.

As for the comparison between solvers it can be observed
that NSGA, NSHS and NSFA perform similarly, with subtle per-
formance gains that lack statistical significance as concluded
by a pairwise Wilcoxon rank sum run offline with a 95 %
confidence interval. Interesting is to highlight the fact that
even when configured with lower number of iterations and
swarm size to ensure fairness in the comparison, the NSFA
approach performs competitively in terms of hypervolume
when compared to NSGA and NSHS. However, MACO is found
to dominate the rest of solvers over the whole benchmark,
with certifiable gaps not only by the visual inspection of the
mean and standard deviation statistics, but also by running a
Wilcoxon test between algorithm pairs, with p-value below
0.05 in all simulated cases. It can be thus concluded that
result samples follow distributions with different medians at a
95 % confidence interval and, hence, MACO renders the best
performance results with statistical significance.

A. A Practical Use Case over Bizkaia (Spain)

To further buttress the practical applicability of the com-
pared heuristics a realistic use case has been designed and
tested over the province of Bizkaia (Basque Country, northern
Spain). The simulated scenario is built upon the time and
distance information provided by Google Maps API over the
totality of |£] = 70 municipalities of this region with a
population above 2000 inhabitants (Figure 3). By repeatedly

querying this service expected travel time matrices and dis-
tances between cities can be constructed for every municipality
pair, which are then fed to the simulation benchmark for a
realistic quantization of costs and transit times of the agents.

43.5 Bl
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Latitude (decimal degrees)
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Gipuzkoa
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I I I I I I I
-3.1 -3 -2.9 -2.8 -2.7 -2.6 -2.5 24
Longitude (decimal degrees)

Fig. 3. Map of the province of Bizkaia (Spain) and its municipalities (H).

Results for this practical scenario with N € {5,10,20} are
listed in the last rows of Table II, with a behavioral trend
aligned with those identified for the synthetic scenarios: the
higher NV is, the more flexibly agents can be scheduled over
the scenario to pick up and deliver goods, hence spanning a
broader set of possible Pareto schedules. Again, MACO was
found to dominate over the rest of heuristics with statistical
significance, from which we conclude that ant-based models
excel at tackling the problem formulated in this work. Finally,
we exemplify the output produced by the designed algorithms
in Figure 4, where it can be noted that for this scenario,
the MACO solver and N = 10 revenues are limited to 1228
m.u. when incentive fairness is ensured (RME(-) = 0 %). By
relaxing this fairness revenues of the courier company might
increase up to 5554 m.u. at the risk of decoupling significantly
(up to RME(+) = 37.62 %) the distance traveled by each agent
and the proportionality of his/her received incentives.
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Fig. 4. Example of an estimated Pareto front by MACO for the realistic
simulation scenario over Bizkaia with N = 10 agents and 5 Monte Carlos.

V. CONCLUSIONS AND FUTURE RESEARCH LINES

This manuscript has elaborated on a multi-objective formu-
lation of the selective pickup and delivery problem comprising
several novel ingredients with respect to the related state of the
art: 1) the inclusion of several courier agents that concurrently
pickup and deliver goods over the same given geographical
area; 2) the consideration and mathematical modeling of the
fairness when providing incentives to the courier agents of the
company in addition to the usual maximum revenue criterion;
and 3) the overall formulation of this trade-off as a bi-
objective optimization problem, which calls for the adoption of
nature-inspired algorithms to efficiently solve for suboptimal
solutions. To this purpose four multi-objective optimization
methods have been designed and implemented, each relying on
avant-garde heuristics with adhoc modifications suited to deal
with the particularities of the problem at hand. Computer sim-
ulations run over synthetically generated scenarios of varying
dimensionality and a realistic setup modeled over the province
of Bizkaia (Spain) have unveiled performance gaps between
the compared heuristics, with a slight dominance of the MACO
solver over all simulated cases.

Future research efforts will be conducted towards including
further real aspects of this problem into the problem formu-
lation, such as the transfer of goods between courier agents
at intermediate points of their routes or the multi-modality
of the transportation chain (along with the modeling of costs
and charges between courier companies derived therefrom).
Furthermore, other heuristic solvers with innovative operators
will be also investigated (e.g. Coral Reefs Optimization [25]).
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