22 research outputs found

    yourSky: rapid desktop access to custom astronomical image mosaics

    Get PDF
    The yourSky custom astronomical image mosaicking software has a Web portal architecture that allows access via ordinary desktop computers with low bandwidth network connections to high performance and highly customizable mosaicking software deployed in a high performance computing and communications environment. The emphasis is on custom access to image mosaics constructed from terabytes of raw image data stored in remote archives. In this context, custom access refers to new technology that enables on the fly mosaicking to meet user-specified criteria for region of the sky to be mosaicked, datasets to be used, resolution, coordinate system, projection, data type and image format. The yourSky server is a fully automated end-to-end system that handles all aspects of the mosaic construction. This includes management of mosaic requests, determining which input images are required to fulfill each request, management of a data cache for both input image plates and output mosaics, retrieval of input image plates from massive remote archives, image mosaic construction on a multiprocessor system, and making the result accessible to the user on the desktop. The URL for yourSky is http://yourSky.jpl.nasa.gov

    yourSky: rapid desktop access to custom astronomical image mosaics

    Get PDF
    The yourSky custom astronomical image mosaicking software has a Web portal architecture that allows access via ordinary desktop computers with low bandwidth network connections to high performance and highly customizable mosaicking software deployed in a high performance computing and communications environment. The emphasis is on custom access to image mosaics constructed from terabytes of raw image data stored in remote archives. In this context, custom access refers to new technology that enables on the fly mosaicking to meet user-specified criteria for region of the sky to be mosaicked, datasets to be used, resolution, coordinate system, projection, data type and image format. The yourSky server is a fully automated end-to-end system that handles all aspects of the mosaic construction. This includes management of mosaic requests, determining which input images are required to fulfill each request, management of a data cache for both input image plates and output mosaics, retrieval of input image plates from massive remote archives, image mosaic construction on a multiprocessor system, and making the result accessible to the user on the desktop. The URL for yourSky is http://yourSky.jpl.nasa.gov

    International Travel as a Risk Factor for Carriage of Extended-Spectrum beta-Lactamase-Producing Escherichia coli in a Large Sample of European Individuals-The AWARE Study

    Get PDF
    Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants' stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67-9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60-13.26), and Asia (aOR 4.08, 95% CI 1.97-8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy

    Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents - the AWARE Study

    Get PDF
    To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300~m away from WWTPs; N = 431) and distant residents (living ≥ 1000~m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage

    The epidemiology and clinical correlates of HIV-1 co-receptor tropism in non-subtype B infections from India, Uganda and South Africa

    Get PDF
    BACKGROUND: The introduction of C-C chemokine receptor type-5 (CCR5) antagonists as antiretroviral therapy has led to the need to study HIV co-receptor tropism in different HIV-1 subtypes and geographical locations. This study was undertaken to evaluate HIV-1 co-receptor tropism in the developing world where non-B subtypes predominate, in order to assess the therapeutic and prophylactic potential of CCR5 antagonists in these regions. METHODS: HIV-1-infected patients were recruited into this prospective, cross-sectional, epidemiologic study from HIV clinics in South Africa, Uganda and India. Patients were infected with subtypes C (South Africa, India) or A or D (Uganda). HIV-1 subtype and co-receptor tropism were determined and analyzed with disease characteristics, including viral load and CD4+ and CD8+ T cell counts. RESULTS: CCR5-tropic (R5) HIV-1 was detected in 96% of treatment-naive (TN) and treatment-experienced (TE) patients in India, 71% of TE South African patients, and 86% (subtype A/A1) and 71% (subtype D) of TN and TE Ugandan patients. Dual/mixed-tropic HIV-1 was found in 4% of Indian, 25% of South African and 13% (subtype A/A1) and 29% (subtype D) of Ugandan patients. Prior antiretroviral treatment was associated with decreased R5 tropism; however, this decrease was less in subtype C from India (TE: 94%, TN: 97%) than in subtypes A (TE: 59%; TN: 91%) and D (TE: 30%; TN: 79%). R5 virus infection in all three subtypes correlated with higher CD4+ count. CONCLUSIONS: R5 HIV-1 was predominant in TN individuals with HIV-1 subtypes C, A, and D and TE individuals with subtypes C and A. Higher CD4+ count correlated with R5 prevalence, while treatment experience was associated with increased non-R5 infection in all subtypes

    Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance

    Get PDF
    There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.(1)Peer reviewe

    Wastewater treatment plants, an “escape gate” for ESCAPE pathogens

    Get PDF
    Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats
    corecore