32 research outputs found
Few and Many-body Physics in cold Rydberg Gases
During this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are very excited atoms and have the particularity to interact strongly together through long-range electrostatic interaction. A first highlight of the thesis is a direct experimental observation of a 4-body process. This process consists in internal exchanges of excitations between 4 Rydberg atoms due to their mutual interactions. In addition to its experimental observation, the process has been succefully described theoretically at a quantum level. A second highlight of this thesis has concerns the study of the laser excitation of strongly interacting Rydberg gases. In this regime, many-body quantum correlations play a central role leading to fascinating many-body behavior. In addition to fundamental interests, such systems could be used to implement quantum simulator or non-classical light sources. The system has been investigated during this thesis through the counting statistics of the Rydberg excitation. A highly sub-poisonian, i.e correlated, statistics has been observed in the regim of strong interactions proving the many-body nature of the system. A third highlight of this thesis is the development of an original theoretical model to describe the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states, it has been possible to catch several interesting features of this many-body problem
Few and Many-body Physics in cold Rydberg gases
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction.Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
Spin Read-out of the Motion of Levitated Electrically Rotated Diamonds
Recent advancements with trapped nano- and micro-particles have enabled the
exploration of motional states on unprecedented scales. Rotational degrees of
freedom stand out due to their intrinsic non-linearity and their coupling with
internal spin degrees of freedom, opening up possibilities for gyroscopy and
magnetometry applications and the creation of macroscopic quantum
superpositions. However, current techniques for fast and reliable rotation of
particles with internal spins face challenges, such as optical absorption and
heating issues. Here, to address this gap, we demonstrate electrically driven
rotation of micro-particles levitating in Paul traps. We show that
micro-particles can be set to rotate stably at 150,000 rpm by operating in a
hitherto unexplored parametrically driven regime using the particle electric
quadrupolar moment. Moreover, the spin states of nitrogen-vacancy centers in
diamonds undergoing full rotation were successfully controlled, allowing
accurate angular trajectory reconstruction and demonstrating high rotational
stability over extended periods. These achievements mark progress toward
interfacing full rotation with internal magnetic degrees of freedom in
micron-scale objects. In particular, it extends significantly the type of
particles that can be rotated, such as ferromagnets, which offers direct
implications for the study of large gyromagnetic effects at the micro-scale
Cooperative excitation and many-body interactions in a cold Rydberg gas
The dipole blockade of Rydberg excitations is a hallmark of the strong
interactions between atoms in these high-lying quantum states. One of the
consequences of the dipole blockade is the suppression of fluctuations in the
counting statistics of Rydberg excitations, of which some evidence has been
found in previous experiments. Here we present experimental results on the
dynamics and the counting statistics of Rydberg excitations of ultra-cold
Rubidium atoms both on and off resonance, which exhibit sub- and
super-Poissonian counting statistics, respectively. We compare our results with
numerical simulations using a novel theoretical model based on Dicke states of
Rydberg atoms including dipole-dipole interactions, finding good agreement
between experiment and theory.Comment: accepted for publication in PRL; 10 pages, 4 figures (including
Supplemental Material
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
The complex remuneration of human resources for health in low-income settings: policy implications and a research agenda for designing effective financial incentives
Background
Human resources for health represent an essential component of health systems and play a key role to accelerate progress towards universal health coverage. Many countries in sub-Saharan Africa face challenges regarding the availability, distribution and performance of health workers, which could be in part addressed by providing effective financial incentives.
Methods
Based on an overview of the existing literature, the paper highlights the gaps in the existing research in low-income countries exploring the different components of health workers' incomes. It then proposes a novel approach to the analysis of financial incentives and delineates a research agenda, which could contribute to shed light on this topic.
Findings
The article finds that, while there is ample research that investigates separately each of the incomes health workers may earn (for example, salary, fee-for-service payments, informal incomes, top-ups- and per diems, dual practice and non-health activities), there is a dearth of studies which look at the health workers' complex remuneration-, that is, the whole of the financial incentives available. Little research exists which analyses simultaneously all revenues of health workers, quantifies the overall remuneration and explores its complexity, its multiple components and their features, as well as the possible interaction between income components. However, such a comprehensive approach is essential to fully comprehend health workers' incentives, by investigating the causes (at individual and system level) of the fragmentation in the income structure and the variability in income levels, as well as the consequences of the complex remuneration- on motivation and performance. This proposition has important policy implications in terms of devising effective incentive packages as it calls for an active consideration of the role that complex remuneration- plays in determining recruitment, retention and motivation patterns, as well as, more broadly, the performance of health systems.
Conclusions
This paper argues that research focusing on the health workers' complex remuneration- is critical to address some of the most challenging issues affecting human resources for health. An empirical research agenda is proposed to fill the gap in our understanding.This article is about public relations expertise. It presents the results of an extensive empirical enquiry and is framed by the concept of profession and the sociological debates that surround it.sch_iih13pub3968pub6
Physique à quelques et à N- corps dans les gaz de Rydberg froids
Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems.Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction
Physique à quelques et à N- corps dans les gaz de Rydberg froids
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction.Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems
Optical characterizations of epitaxial materials: from crystal defects to optoelectronic properties
International audienceMaterials for light harvesting or photonic applications are at the heart of many recent technological developments and innovation, to address the main issues of the XXIst century, such as health care, clean water, sanitation, affordable and clean energy, environmental sensors, climate action, computing or communication. In this context, epitaxy is often considered as the ultimate technology for growing materials with dedicated physical properties, and especially optical ones. It however comes with the inevitable formation of several different crystal defects. In this contribution, the link between crystal defects and optoelectronic properties of semiconductors will be first presented. We will then review the different optical characterization tools commonly used with epitaxial materials, both for light emission or light harvesting. Prospects will be given on the development of single photons characterization tools, in the context of the recent development of quantum technologies