46 research outputs found

    Approaching the uncultured endosymbiont of Riftia pachyptila by physiological proteomics

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of AAAS for personal use, not for redistribution. The definitive version was published in Science 315 (2007): 247-250, doi:10.1126/science.1132913.The bacterial endosymbiont of the deep-sea tube worm Riftia pachyptila has never been successfully cultivated outside its host. In the absence of cultivation data we have taken a proteomic approach based on the metagenome sequence to study the metabolism of this peculiar microorganism in detail. As one result, we found that three major sulfide oxidation proteins constitute ~12% of the total cytosolic proteome, highlighting the essential role of these enzymes for the symbiont’s energy metabolism. Unexpectedly, the symbiont uses the reductive tricarboxylic acid (TCA) cycle in addition to the previously identified Calvin cycle for CO2 fixation.This work was supported by the DFG, grant Schw595/3-1. Other funding sources were: NSF (OCE 04-52333) and NASA Astrobiology Institute (NNA04CC04A) for SMS, MH: postdoctoral scholarship from WHOI, HF: Academic Senate (RF811S and RE518S)

    Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense

    Get PDF
    3-Hydroxypropionic acid (3-HP) is an important platform chemical to be converted to acrylic acid and acrylamide. Aldehyde dehydrogenase (ALDH), an enzyme that catalyzes the reaction of 3-hydroxypropionaldehyde (3-HPA) to 3-HP, determines 3-HP production rate during the conversion of glycerol to 3-HP. To elucidate molecular mechanism of 3-HP production, we determined the first crystal structure of a 3-HP producing ALDH, alpha-ketoglutarate-semialdehyde dehydrogenase from Azospirillum basilensis (AbKGSADH), in its apo-form and in complex with NAD(+). Although showing an overall structure similar to other ALDHs, the AbKGSADH enzyme had an optimal substrate binding site for accepting 3-HPA as a substrate. Molecular docking simulation of 3-HPA into the AbKGSADH structure revealed that the residues Asn159, Gln160 and Arg163 stabilize the aldehyde-and the hydroxyl-groups of 3-HPA through hydrogen bonds, and several hydrophobic residues, such as Phe156, Val286, Ile288, and Phe450, provide the optimal size and shape for 3-HPA binding. We also compared AbKGSADH with other reported 3-HP producing ALDHs for the crucial amino acid residues for enzyme catalysis and substrate binding, which provides structural implications on how these enzymes utilize 3-HPA as a substrate

    Pathways of Carbon Assimilation and Ammonia Oxidation Suggested by Environmental Genomic Analyses of Marine Crenarchaeota

    Get PDF
    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems

    Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans

    Get PDF
    Author Posting. © American Society for Microbiology, 2008. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 74 (2008): 1145-1156, doi:10.1128/AEM.01844-07.Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, University of California, under contract W-7405-ENG-48. Genome closure was funded in part by a USF Innovative Teaching Grant (K.M.S.). S.M.S. received partial support through a fellowship from the Hanse Wissenschaftskolleg in Delmenhorst, Germany (http://www.h-w-k.de), and NSF grant OCE-0452333. K.M.S. is grateful for support from NSF grant MCB-0643713. M.H. was supported by a WHOI postdoctoral scholarship. M.G.K. was supported in part by incentive funds provided by the UofL-EVPR office, the KY Science and Engineering Foundation (KSEF-787-RDE-007), and the National Science Foundation (EF-0412129)

    An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

    Get PDF
    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions

    Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents

    Get PDF
    Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that -contrary to previous assertions- Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution

    Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT.

    Get PDF
    Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilum T) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum T obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilum T to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum T coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilum T for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction

    Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    Get PDF
    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry

    Early evolution of the biotin-dependent carboxylase family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biotin-dependent carboxylases are a diverse family of carboxylating enzymes widespread in the three domains of life, and thus thought to be very ancient. This family includes enzymes that carboxylate acetyl-CoA, propionyl-CoA, methylcrotonyl-CoA, geranyl-CoA, acyl-CoA, pyruvate and urea. They share a common catalytic mechanism involving a biotin carboxylase domain, which fixes a CO<sub>2 </sub>molecule on a biotin carboxyl carrier peptide, and a carboxyl transferase domain, which transfers the CO<sub>2 </sub>moiety to the specific substrate of each enzyme. Despite this overall similarity, biotin-dependent carboxylases from the three domains of life carrying their reaction on different substrates adopt very diverse protein domain arrangements. This has made difficult the resolution of their evolutionary history up to now.</p> <p>Results</p> <p>Taking advantage of the availability of a large amount of genomic data, we have carried out phylogenomic analyses to get new insights on the ancient evolution of the biotin-dependent carboxylases. This allowed us to infer the set of enzymes present in the last common ancestor of each domain of life and in the last common ancestor of all living organisms (the cenancestor). Our results suggest that the last common archaeal ancestor had two biotin-dependent carboxylases, whereas the last common bacterial ancestor had three. One of these biotin-dependent carboxylases ancestral to Bacteria most likely belonged to a large family, the CoA-bearing-substrate carboxylases, that we define here according to protein domain composition and phylogenetic analysis. Eukaryotes most likely acquired their biotin-dependent carboxylases through the mitochondrial and plastid endosymbioses as well as from other unknown bacterial donors. Finally, phylogenetic analyses support previous suggestions about the existence of an ancient bifunctional biotin-protein ligase bound to a regulatory transcription factor.</p> <p>Conclusions</p> <p>The most parsimonious scenario for the early evolution of the biotin-dependent carboxylases, supported by the study of protein domain composition and phylogenomic analyses, entails that the cenancestor possessed two different carboxylases able to carry out the specific carboxylation of pyruvate and the non-specific carboxylation of several CoA-bearing substrates, respectively. These enzymes may have been able to participate in very diverse metabolic pathways in the cenancestor, such as in ancestral versions of fatty acid biosynthesis, anaplerosis, gluconeogenesis and the autotrophic fixation of CO<sub>2</sub>.</p
    corecore