382 research outputs found

    A magnetotelluric experiment around St. Austell, Cornwall

    Get PDF
    In this BGS Open Report we describe the results of a pilot study assessing the potential of the magnetotelluric (MT) method to characterize geothermal reservoirs at depth when the target site is in a semi-urban environment. During an MT survey, the natural variations of the electromagnetic field of the Earth are measured at the field site for time windows of a few hours up to a couple of days. As a passive geophysical technique, the data quality is dependent on the in-situ electromagnetic noise levels. The noise come from technological infrastructure that dominates the landscape of modern Britain such as power lines, high voltage transformers, electric fences, radio towers, electrified railways and gas pipeline protection systems. In the absence of artificial noise, the MT method can sample the shallow and deep subsurface of the Earth down to the lower crust and mantle depending on the frequency of the measured signal. MT images the bulk electrical conductivity of the rocks and can therefore indicate the presence of fluids at depth. For deep geothermal exploration, MT has been identified as one of the few geophysical techniques able to help characterise geothermal host rocks and zones of enhanced permeability and porosity which are necessary for the fluid circulation of an enhanced geothermal system. Deep geothermal exploration in the UK has, so far, been limited to the granites of Cornwall which are known to have relatively high heat flow. Along with a strong legacy knowledge of the geology of the subsurface these have encouraged two deep geothermal drill projects. At the Eden Geothermal site close to the Eden Project in St Austell, a 5,277 m deep borehole was drilled into the St Austell granite to intersect with a known geologic fault zone, the NNW-SSE striking Great Cross-Course (GXC) Fault, where the circulation of geothermal fluids in a closed loop system was deemed possible. The drilling was partly sponsored by the European Regional Development Fund and designed as both a research facility and to provide green energy to the Eden Project and adjacent businesses. The position and extent of the fault zone at depth was not known and previous geophysical surveys had been limited to very shallow depths. Seismic monitoring has been an ongoing component of the drilling and ensuing pump testing. During a 10-day field campaign in March 2023 a team from BGS were able to collect broadband MT data at 30 sites in the St Austell area and one remote site in Bodmin Moor to help improve data quality through remote referencing time-series processing techniques. Data collected very close to the drill site and at some locations close to town centres have low quality, but overall data quality was sufficient to allow modelling of the electrical properties at depth. The derived MT impedance tensors were used to construct a 3D model of the area which has low spatial resolution but clearly shows that MT data can image the local geology at depth. The St Austell granite is characterized by high resistivities, whereas the onshore sediments and metasediments surrounding the intrusion have lower resistivities. Some vertical structures of lower resistivity within the granite were identified and are carefully investigated. Overall, the use of the MT method for the characterisation of geothermal reservoirs in granitic bodies is confirmed in this study. Further data collection and modelling is recommended to improve the spatial resolution at depth

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China ? interpretations of atmospheric measurements during EAST-AIRE

    No full text
    International audienceBlack carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon) and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial) chimney plumes, other coal burning pollution, and relatively clean (background) air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5, and 0.03 m2/g, respectively. While agreeing with the common consensus that BC is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths

    Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropics B

    Get PDF
    Bulk aerosol sampling of soluble ionic compounds from the NASA Wallops Island P-3 aircraft and a tower on Christmas Island during PEM-Tropics B provides an opportunity to assess the magnitude of particle losses in the University of New Hampshire airborne bulk aerosol sampling system. We find that most aerosol-associated ions decrease strongly with height above the sea surface, making direct comparisons between mixing ratios at 30 m on the tower and the lowest flight level of the P-3 (150 m) open to interpretation. Theoretical considerations suggest that vertical gradients of sea-salt aerosol particles should show exponential decreases with height. Observed gradients of Na+ and Mg2+, combining the tower observations with P-3 samples collected below 1 km, are well described by exponential decreases (r values of 0.88 and 0.87, respectively), though the curve fit underestimates average mixing ratios at the surface by 25%. Cascade impactor samples collected on the tower show that \u3e99% of the Na+ and Mg2+mass is on supermicron particles, 65% is in the 1–6 micron range, and just 20% resides on particles with diameters larger than 9 microns. These results indicate that our airborne aerosol sampling probes must be passing particles up to at least 6 microns with high efficiency. We also observed that nss SO42− and NH4+, which are dominantly on accumulation mode particles, tended to decrease between 150 and 1000 m, but they were often considerably higher at the lowest P-3 sampling altitudes than at the tower. This finding is presently not well understood

    Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics

    Get PDF
    Distributions of aerosol-associated soluble ions over much of the South Pacific were determined by sampling from the NASA DC-8 as part of the Pacific Exploratory Mission (PEM) Tropics campaign. The mixing ratios of all ionic species were surprisingly low throughout the free troposphere (2-12 km), despite the pervasive influence from biomass burning plumes advecting over the South Pacific from the west during PEM-Tropics. At the same time, the specific activity of 7Be frequently exceeded 1000 fCi m-3 through much of the depth of the troposphere. These distributions indicate that the plumes must have been efficiently scavenged by precipitation (removing the soluble ions), but that the scavenging must have occurred far upwind of the DC-8 sampling regions (otherwise 7Be activities would also have been low). This inference is supported by large enhancements of HNO3 and carboxylic acids in many of the plumes, as these soluble acidic gases would also be readily scavenged in any precipitation events. Decreasing mixing ratios of NH4 + with altitude in all South Pacific regions sampled provide support for recent suggestions that oceanic emissions of NH3 constitute a significant source far from continents. Our sampling below 2 km reaffirms the latitudinal pattern in the methylsulfonate/non-sea-salt sulfate (MSA/nss SO4 =) molar ratio established through surface-based and shipboard sampling, with values increasing from \u3c0.05 in the tropics to nearly 0.6 at 70°S. However, we also found very high values of this ratio (0.2-0.5) at 10 km altitude above the intertropical convergence zone near 10°N. It appears that wet convective pumping of dimethylsulfide from the tropical marine boundary layer is responsible for the high values of the MSA/nss SO4 = ratio in the tropical upper troposphere. This finding complicates use of this ratio to infer the zonal origin of biogenic S transported long distances. Copyright 1999 by the American Geophysical Union

    Modeled larval fish prey fields and growth rates help predict recruitment success of cod and anchovy in the North Sea

    Get PDF
    Abstract. We introduce a new, coupled modeling approach for simulating ecosystem-wide patterns in larval fish foraging and growth. An application of the method reveals how interplay between temperature and plankton dynamics during 1970-2009 impacted a cold-water species (Atlantic cod Gadus morhua) and a warm-water species (European anchovy Engraulis encrasicolus) in the North Sea. Larval fish growth rates were estimated by coupling models depicting traitbased foraging and bioenergetics of individuals, spatiotemporal changes in their prey field, and the biogeochemistry and hydrodynamics of the region. The biomass composition of modeled prey fields varied from 89% nano-, 10% micro-, and 1% mesoplankton to 15% nano-, 20% micro-, and 65% mesoplankton. The mean slope of the normalized biomass size spectrum was near -1.2, consistent with theoretical and empirical estimates. Median larval fish growth rates peaked in June for cod (24% d(-1)) and in July for anchovy (17% d(-1)). Insufficient prey resources played a substantial role in limiting the growth rates of cod larvae. Anchovy were consistently limited by cold temperatures. Faster median larval growth during specific months was significantly (p < 0.05) positively associated with detrended (i.e. higher than expected) juvenile recruitment indices in cod (rank correlation Kendall's tau = 22%) and anchovy (tau = 42%). For cod, the most predictive month was February, which was also when food limitation was most prevalent. The continued development of modeling tools based on first principles can help further a mechanistic understanding of how changes in the environment affect the productivity of living marine resources

    Differential Magnetometer Measurements of Geomagnetically Induced Currents in a Complex High Voltage Network

    Get PDF
    Space weather poses a hazard to grounded electrical infrastructure such as high voltage (HV) transformers, through the induction of geomagnetically induced currents (GICs). Modelling GIC requires knowledge of the source magnetic field and the Earth's electrical conductivity structure, in order to calculate the geoelectric fields generated during magnetic storms, as well as knowledge of the topology of the HV network. Direct measurement of GICs at the ground neutral in substations is possible with a Hall‐effect probe, but such data are not widely available. To validate our HV network model, we use the Differential Magnetometer Method (DMM) to measure GICs in the 400 kV grid of Great Britain. We present DMM measurements for the 26 August 2018 storm at a site in eastern Scotland with up to 20 A recorded. The line GIC correlate well with Hall probe measurements at a local transformer, though they differ in amplitude by an order of magnitude (a maximum of ~2 A). We deployed a long‐period magnetotelluric (MT) instrument to derive the local impedance tensor which can be used to predict the geoelectric field from the recorded magnetic field. Using the MT‐derived electric field estimates, we model GICs within the network, accounting for the difference in magnitude between the DMM‐measured line currents and earth currents at the local substation. We find the measured line and earth GICs match the expected GICs from our network model, confirming that detailed knowledge of the complex network topology and its resistance parameters is essential for accurately computing GICs

    Water-soluble material on aerosols collected within volcanic eruption clouds

    Get PDF
    In February and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The samples were collected on Teflon (Fluoropore) filters with a nominal pore diameter of 0.5μm. The mass of air sampled by the filters ranged from 0.15 to 6.6 kg. The particulate material collected consisted of fragments of angular silicate ash and droplets of what is interpreted as dilute H2SO4 and HCl. After collection of the samples, each filter was rinsed with 60 ml of distilled-deionized water. Splits of each extract were centrifuged to remove particles greater than or equal to 0.1 μm in diameter, acidified, and analyzed for B, Ba, Be, Ca, Cd, Co, Cu, Fe, Li, Mg, Mn, Mo, Na, Pb, Si, Sr, V, and Zn by inductively coupled plasma—optical emission spectroscopy. Separate splits were analyzed for F and Cl by specific-ion-electrode methods and for U by a fission track technique. The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb. These elements represent a subset (with the addition of Cl and F) of elements previously reported enriched in atmospheric aerosols in remote regions as well as in volcanic areas. This suggests that some of the enriched elements were widely dispersed as volatile halides emitted from a volcanic source

    3D printing for bio-synthetic biliary stents

    Get PDF
    Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques

    Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    Get PDF
    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%
    corecore