10 research outputs found

    A Novel Copper (II) Complex Identified as a Potent Drug Against Colorectal and Breast Cancer Cells and as a Poison Inhibitor for Human Topoisomerase IIᶐ

    Get PDF
    A novel complex, [Cu(acetylethTSC)Cl]Cl · 0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIᶐ which may account for the observed anti-cancer effects

    Coordination of Different Ligands to Copper(II) and Cobalt(III) Metal Centers Enhances Zika Virus and Dengue Virus Loads in Both Arthropod Cells and Human Keratinocytes

    Get PDF
    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100 ÎŒM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as “free” cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. Importance Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly. © 2017 Elsevier B.V. All rights reserved

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Multiprocess 3D printing of sodium-ion batteries via vat photopolymerization and direct ink writing

    No full text
    In this work, the ability to print shape-conformable batteries with multi-process additive manufacturing is reported. Vat photopolymerization (VPP) 3D printing process is employed to manufacture gel polymer electrolytes (GPEs) for sodium-ion batteries (SIBs), while direct ink writing process is used to prepare positive electrodes. The sodium-ion chemistry has proven to be an adequate substitute to lithium-ion due to the availability of resources and their potential lower production cost and enhanced safety. Three-dimensional printing technologies have the potential to revolutionize the production of shape-conformable batteries with intricate geometries that have been demonstrated to increase the specific surface area of the electrode and ion diffusion, thus leading to improved power performances. This study shows the preparation of composite UV-photocurable resins with different polymer matrix-to-liquid electrolyte ratios, designed to act as GPEs once printed via VPP. The impact of the liquid electrolyte ratio within the GPEs is thoroughly examined through a variety of electrochemical techniques. The exposure time printing parameter is optimized to ensure adequate print accuracy of the GPE. Using the optimized resin composition as material feedstock, shape-conformable 3D printed GPE exhibiting an ionic conductivity of 3.3 × 10 ^−3 S·cm ^−1 at room temperature and a stability window up to 4.8 V vs. Na ^0 /Na ^+ is obtained. In parallel, a composite ink loaded with Na _0.44 MnO _2 and conductive additives is developed to 3D print via direct ink writing positive electrodes. After demonstrating the functionality of the independent 3D printed components in SIBs, the last part of this work is focused on combining the 3D printed Na _0.44 MnO _2 electrode and the 3D printed GPE into the same battery cell to pave the way towards the manufacturing of a complete 3D printed battery thanks to different additive manufacturing processes

    A Novel Copper(II) Complex Identified as a Potent Drug Against Colorectal and Breast Cancer Cells and as a Poison Inhibitor for Human Topoisomerase II alpha

    Get PDF
    A novel complex, [Cu(acetylethTSC)Cl]Cl·0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIα, which may account for the observed anti-cancer effects. (C) 2015 Elsevier B.V. All rights reserved

    A novel copper(II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα.

    No full text
    A novel complex, [Cu(acetylethTSC)Cl]Cl‱0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIα, which may account for the observed anti-cancer effects
    corecore