84 research outputs found

    Hereditary thrombotic thrombocytopenic purpura and COVID-19: Impacts of vaccination and infection in this rare disease.

    Get PDF
    Introduction Severe COVID-19 is associated with an important increase of von Willebrand factor and mild lowering of ADAMTS13 activity that may, in the presence of a strong inflammatory reaction, increase the risk of acute thrombotic thrombocytopenic purpura (TTP). Although acute episodes of immune-mediated TTP associated with COVID-19 or SARS-CoV-2 vaccination have been reported, data about clinical evolution of hereditary TTP (hTTP) during the pandemic are scarce. Method We conducted a survey among adult patients of the International Hereditary TTP Registry about SARS-CoV-2 vaccination, COVID-19, and occurrence of acute hTTP episodes. Results Of 122 adult hTTP patients invited to participate, 86 (70.5%) responded. Sixty-five had been vaccinated (75.6%), of which 14 had received in addition a booster, resulting in 139 individual vaccine shots. Although vaccinations in patients on plasma prophylaxis were done within 1 week of the last plasma infusion, all 23 patients treated with plasma on demand were vaccinated without prior plasma infusions. One patient on uninterrupted weekly plasma infusions presented within 3 days from his second vaccination with neurological symptoms and computed tomography scan 9 days later showed subacute ischemic/hemorrhagic frontal lobe infarction. A second male patient developed acute myocarditis after his second dose of mRNA-1273 vaccine. Twelve (14%) patients had COVID-19, associated with an acute hTTP episode in three of them: one patient had a transient ischemic attack, one a stroke, and a pregnant woman was hospitalized to intensify plasma treatment. Discussion The risk of an acute episode triggered by COVID-19 seems higher than following vaccination in hTTP patients, who can be safely vaccinated against SARS-CoV-2

    Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis <it>in vivo</it>, from the start point to tumor establishment.</p> <p>Results</p> <p>We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without <it>in vitro </it>telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants.</p> <p>Conclusions</p> <p>TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.</p

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio

    Multiple Tumor Suppressor microRNAs Regulate Telomerase and TCF7, an Important Transcriptional Regulator of the Wnt Pathway

    Get PDF
    The human TERT (hTERT) gene encodes the telomerase catalytic subunit which plays a role in telomerase regulation. Telomerase is activated in more than 90% of all human malignancies and understanding how telomerase is regulated is necessary for implementation of successful anti-cancer therapies. microRNAs (miRNAs) are important regulators of gene expression in eukaryotic cells but evidence of their role in telomerase regulation has not been documented. To determine whether hTERT activity is regulated by multiple miRNAs, eight miRNAs which have putative binding sites in the hTERT 3′UTR together with miR-138-5p were evaluated in luciferase assays with a reporter containing the hTERT 3′UTR. Six miRNAs (let-7g*, miR-133a, miR-138-5p, miR-342-5p, miR-491-5p, and miR-541-3p) specifically inhibited the expression of the reporter luciferase-driven constructs and let-7g*, miR-133a, miR-138-5p, and miR-491-5p also downregulated endogenous telomerase activity in cells. Moreover, all six miRNAs significantly inhibited cell proliferation. miRNAs (miR-133a, miR-138-5p, 342-5p, 491-5p, 541-3p) also have predicted binding sites within the 3′UTR of three genes involved in Wnt signaling (TCF7, MSI1, and PAX5). These miRNAs inhibited the expression of the luciferase reporter constructs containing 3′UTRs of these genes and downregulated protein expression of the TCF7 transcription factor, which mediates the canonical Wnt pathway. Together, these results suggest the existence of a miRNA regulatory network involving the hTERT and Wnt pathway.This work was supported by the Public Health Service grants CA33192 and CA098151 from the National Cancer Institute (http://www.cancer.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular BiologyEmail: [email protected]
    • …
    corecore