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Abstract

Background: Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance,
essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role
in telomerase activation in human cancers.

Main body: The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere
maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic
instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length
maintenance mechanisms, mainly by telomerase activation.
hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT
amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter
methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were
shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for
cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and
might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with
telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers
important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a
better understanding of these mechanisms may promote their translation into effective targeted cancer therapies.

Conclusion: Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the
potential clinical applications in telomerase-dependent cancers.
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Background
Replicative capacity is one of the most critical features in
cancer cells, which is attained by telomere maintenance [1].
Telomeres protect the ends of chromosomes from degrad-
ation and end-to-end fusions, contributing to genomic
stability [1, 2]. Telomerase, a specialized DNA polymerase,

is responsible for telomere maintenance in the majority of
human cancers, but its activity is absent in most normal
somatic tissues. This differential role makes telomerase and
its regulatory mechanisms attractive cancer biomarkers
with relevant implications in clinical practice [3].

Telomeres and telomerase
Telomeres are the nucleoprotein complexes located at the
ends of eukaryotic chromosomes. Telomere structure was
discovered by Muller and Meier in 1938. Telomeres consist
of 5 to 20kb of repeating hexanucleotide DNA sequence
TTAGGG (telomeric DNA) [4–6]. Telomeric DNA repeats
are followed by a terminal 3´G-rich single-stranded
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overhang forming a telomeric loop (T-loop) that provides
3´end protection [7, 8]. Telomeric DNA is associated with
the shelterin protein complex and together they protect
chromosomal ends and maintain genomic and chromo-
somal integrity by preventing nucleolytic degradation, un-
necessary recombination, and inter-chromosomal fusions
[7, 9, 10]. The shelterin complex consists of a group of six
telomere-specific proteins; telomeric repeat binding factor
1 and 2 (TERF1, TERF2) and protection of telomeres pro-
tein 1 (POT1) interact directly with TTAGGG repeats.
These proteins are interconnected with three others:
TERF1 Interacting Nuclear Factor 2 (TINF2), tripeptidyl-
peptidase 1 (TPP1), and repressor activator protein 1
(RAP1) [7, 8, 11]. Telomeric DNA is masked with shelterin
protective caps and these complexes enable DNA damage
repair (DDR) machinery to distinguish telomeric DNA
from genomic DNA damage [12, 13]. Throughout cellular
lifespan, telomeric DNA is shortened after each replicative
cycle due to the “end-replication problem”, oxidative dam-
age, age, and lifestyle (including diet, smoking, professional
environment and stress) [14–16]. Telomere shortening
leads to a stage of cell growth arrest. At this stage (M1),
DNA damage signalling and cellular senescence are trig-
gered which constitutes a crucial protective mechanism
that prevents progression to an oncogenic state [10, 17].
However, in some cases, cells surpass this senescence state
(avoiding important cell cycle checkpoints provided by
p16INK4a, TP53 and Rb) and enter a crisis state (M2) [17].
At this point, cells have very short telomeres and their
chromosomal ends fuse, leading to chromosome bridge-
breakage-fusion cycles, genomic instability, and eventually

cell apoptosis [17]. However, in rare situations, cells may
acquire the ability to continuously divide which may
promote malignant transformation (Fig. 1). This process of
unlimited self-renewal is mediated by telomerase that
maintains or lengthen telomeres promoting cellular
immortalization process [1, 3, 17].
Telomerase was discovered in 1985, as an enzyme cap-

able of extending telomeric repeat sequences; and in 1989,
telomerase activity was reported for the first time [18–20].
However, the protein component of telomerase was only
identified and functionally characterized in 1997, more than
a decade after its discovery [21]. This enzyme consists of a
large ribonucleoprotein complex responsible for progressive
synthesis of telomeric DNA repeats. Telomerase is a DNA
polymerase that consists of two different subunits: a
functional catalytic protein subunit called human telomer-
ase reverse transcriptase (hTERT) encoded by the TERT
gene, positioned at chromosome 5p15.33; and a RNA com-
ponent known as human telomerase RNA component
(hTERC or hTR), encoded by the TERC gene on chromo-
somal region 3q26 [22–24]. Other proteins including
Pontin, Reptin, Gar1, Nhp2, and Tcab1 were shown to be
associated with the telomerase core complex and required
for proper telomerase assembly and recruitment to
chromosomes [25, 26]. Dyskerin and telomerase protein
component (TEP1) have an important role in stabilizing
the telomerase complex [27, 28]. Es1p and Es3p are
additional protein subunits (Ku heterodimer) involved in
assembly and maturation, which also contribute to the
telomerase enzymatic complex [29]. Despite extensive re-
search on these proteins, the three-dimensional structure of

Fig. 1 Telomere length dynamics in different cells over time. Telomeres shorten over time. Germ cells and embryonic stem cells have long telomeres
that are maintained by telomerase activity. Stem cells have shorter telomeres and somatic cells even shorter. After multiple cell divisions these cells
achieve a senescence state (M1). At M2 stage cells enter crisis due to their short telomeres that lead to chromosomal and genomic instability resulting
in apoptosis. Cancer cells escape from crisis through telomerase activation, reacquire longer telomeres and unlimited self-renewal capacity
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human telomerase is yet to be fully understood [30]. Im-
portantly, only hTERC and hTERT are necessary for the re-
establishment of telomerase activity [31–33].
hTERT mRNA expression is strictly controlled and

closely associated with telomerase activity, which suggests
that hTERT is the primary determinant for the enzyme
activity. Current knowledge proposes that the limiting
factor for telomerase activity is hTERT expression which is
tightly regulated at transcriptional level [34–37]. Experi-
mental evidence suggests that telomerase activity shows
strong association with hTERT expression [30]. hTERC acts
as a template for the synthesis of telomeric DNA, and un-
like hTERT, is ubiquitously expressed in all tissues. There-
fore, it has been considered by some authors as a non-
limiting factor of telomerase activity [38, 39]. However, an-
other study performed in fibrosarcoma-derived HT1080
cells [40] revealed that hTERC is more abundant in tumors
than in normal cells with its locus amplified, and is essential
for telomerase activity and can be a limiting factor [40].
hTERT regulation is a multifarious process yet to be

fully understood where both transcriptional and post-
transcriptional mechanisms are involved [38]. These in-
clude pre-mRNA alternative splicing of the hTERT gene
which was found to be involved in the regulation of tel-
omerase activity [41–43] and has been associated with
diagnosis, prognosis and clinical cancer parameters [43].

hTERT regulation in normal cells
Telomerase is constitutively activated in germline,
hematopoietic, stem and also rapidly renewing cells [44,
45]. On the other hand, telomerase activity is very low or
absent in somatic cells mainly due to tight hTERT regula-
tion [46]. However, telomerase activity was found in normal
human blood cells and other normal human cell types that
are mitotically active, such as proliferative basal skin layer,
endometrial tissue (during menstrual cycle), proliferative
zone of intestinal crypts, and hair follicles [44, 45, 47–52].
Telomere length and telomerase activity diverge be-

tween normal and embryonic stem cells. While embryonic
stem cells fully maintain their telomeres and exhibit
telomerase activity, normal stem cells have progressive
telomere shortening and minimal telomerase activity (Fig.
1). Since hTERT is not expressed in most normal human
cells, it can be used as a potential cancer biomarker. In
fact, there are studies suggesting that telomerase activity
might be a useful marker for diagnosis (detecting cancer
disease) and prognosis (associated with stage and disease
outcome) in different cancers (e.g., prostate, bladder,
thyroid, breast, colon, gastric and lung) [53–65].

hTERT regulation in Cancer
Cancer arises when normal cells accumulate genomic
instability and acquires limitless proliferative capacity

[66]. Cancer cells have acquired the ability to overcome
their fate of senescence via telomere length maintenance
mechanisms, mainly by telomerase activation or alterna-
tive mechanisms (alternative lengthening of telomeres –
ALT) [3, 67–69]. In 1994, it was shown that telomerase
is upregulated in up to 90% of malignancies, and is cru-
cial for oncogenesis and disease progression [68, 70–74].
hTERT regulation mechanisms have been studied for

the last 20 years, and recent advances mainly related to
the discovery of hTERT promoter mutations have given
new impetus to better understand the mechanisms in-
volved in hTERT regulation [75].
However, other alterations were recently reported, and

hTERT expression is also up-regulated in tumors via
multiple genetic and epigenetic mechanisms including
hTERT amplifications (3%), hTERT structural variants (3%),
hTERT promoter mutations (31%) and epigenetic modifica-
tions through hTERT promoter methylation (53%) [72, 76].

hTERT regulation in cancer: genetic mechanisms
hTERT amplifications
Gain or loss of genetic material occurs frequently in cancer
where gene amplification is an important mechanism for the
oncogenic process. Gene amplification results from a copy
number increase associated with overexpression of the amp-
lified gene. Different models have been proposed for the ini-
tiation of amplification including DNA replication errors,
telomere dysfunction and the existence of chromosomal fra-
gile sites [77]. Specifically, hTERT gene amplification can re-
sult from telomere dysfunction in addition to breakage at
fragile sites and formation of chromosomal fusions [78]. In a
large cohort made of 31 different types of cancer, it was dem-
onstrated that 3% out of 95% of hTERT expressing tumours
presented hTERT amplifications [76]. Therefore, hTERT
might be a target for amplification during tumorigenesis,
which contributes to the dysregulation of telomerase activity
that usually occurs in human tumors [79].

hTERT amplifications: clinical relevance
Increased hTERT gene copy number is associated with up-
regulation of hTERT expression, related to acquired drug
resistance, and correlated with worse clinical outcomes in
breast, skin and thyroid cancer [79–82]. However, in blad-
der cancer, no correlation was observed between increased
hTERT gene copy number and hTERT mRNA, telomerase
activity, or telomere length, suggesting that hTERT gene
amplification may require another companion alteration
for telomerase reactivation [83, 84].

TERT genomic rearrangements
Another potential mechanism of hTERT upregulation in tu-
mors are the genomic rearrangements affecting the hTERT
gene locus (5p15.33). Functionally, these rearrangements
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bring active enhancers in proximity to the hTERT gene, and
the interaction between the promoter and these newly intro-
duced enhancers drives hTERT expression [85, 86]. hTERT
rearrangements were associated with increased hTERT ex-
pression, with poorer patient outcome, and found along
with other telomere maintenance mechanisms including
ALTand MYCN amplifications in neuroblastoma [87].
Further studies are essential to understand whether or

not hTERT rearrangements are used by different types of
cancers, and as well their clinical impact.

TERT promoter mutations
In 2013, two pivotal studies described two recurrent
non-coding mutations within the hTERT promoter re-
gion in both familial and sporadic melanomas [88, 89].
These two mutations were located at -124 and -146 bp
upstream from ATG (chr5:1,295,228 G>A and 1,295,250
G>A, C>T on opposite strand). After the initial discov-
ery, hTERT promoter mutations (TERTpMut) have been
identified in multiple and distinct tumor types, such as
glioblastoma, bladder and thyroid cancer, with different
prevalence according to cancer type and histology [90].
TERTpMut represent a frequent but unique genetic al-

teration that drives hTERT expression and telomerase
activation. hTERT core promoter consists of 260 base
pairs with multiple transcription-factors binding motifs
that regulate gene transcription and telomerase activa-
tion [91]. The location of these mutations within the
promoter creates additional binding sites for the E-
twenty-six (ETS) transcription factor family, thus consti-
tuting a novel mechanism of genetic activation in cancer
and a possible driver genomic alteration [92, 93].
The transcriptional controlling of hTERT gene is complex

and includes regulation at multiple levels by various posi-
tive and negative factors or pathways. Recent knowledge
has come from the cloning of hTERT promoter and identi-
fication of various transcription factor-binding motifs, in-
volved in hTERT expression and telomerase regulation by
TERTpMut [22, 30, 39, 94–96]. TERTpMut modulate tran-
scriptional regulation without altering an encoding protein.
Functionally, hTERT promoter mutations are associated
with the formation of consensus binding sequence
(CCGGAA) at the E-twenty-six/ternary complex (ETS/
TCF) transcription factors (Fig. 2), providing a possible
mechanism for cancer-specific upregulation of telomerase
[88, 89]. Mechanistically, ETS transcription factor binding
to the motifs (created by the mutations) causes a recruit-
ment of a multimeric ETS family member, the GA-binding
protein alpha subunit (GABPA) that activates hTERT tran-
scription [88, 97, 98]. These findings were further explored
through luciferase reporter assays showing increased tel-
omerase activity in cells transfected with mutant constructs.
[88, 89, 99] Moreover, there is an evidence of promoter mu-
tations creating de novo transcription factor binding sites,

as cells co-transfected with mutant promoter constructs
and plasmids containing ETS1 cDNA display increased
activity [100]. In cancer cells harboring TERTpMut, the mu-
tant promoter recruits GABPA and exhibits H3K4m2/3, an
active chromatin mark. On the other hand, wild type cell
lines exhibit the H3K27me3, a mark of epigenetic silencing,
suggesting that only the mutant promoters are transcrip-
tionally active [98]. Despite both mutations are functionally
active the TERTpMut, C228T is significantly more frequent
than the C250T [101].
The wide distribution across different tumors (urothelial

cancer – bladder and upper urinary tract, melanoma, glio-
blastoma, thyroid cancer, hepatocellular carcinoma) and
high frequency in some of them has created an important
hub around these genetic alterations [90, 99, 102, 103].
Bladder, thyroid, cutaneous melanoma, basal cell and
squamous carcinoma and oligodendrogliomas are exam-
ples of cancers where TERTpMut are widespread through
different stages and grades of the disease, suggesting their
role as an early tumorigenic event [102, 103]. Additionally,
not all TERTpMut tumors display telomerase activation
and some premalignant lesions also displayed these gen-
etic alterations at the hTERT promoter region [104]. To-
gether, these results support the fact that TERTpMut may
act as early events in the oncogenic process [90, 105–107].
Important information came recently from a new study

demonstrating that TERTpMut are necessary but not suffi-
cient to maintain telomere length nor telomerase upregu-
lation [108]. In fact these authors demonstrated that
TERTpMut acquired at the transition from benign nevus to
malignant melanoma do not support telomere mainten-
ance suggesting that TERTpMut contribute to tumorigen-
esis in two distinct ways. Initially, TERTpMut do not
prevent telomere shortening but act “healing” the shortest
telomeres and later telomeres are critically short leading
to genomic instability and telomerase reactivation [108].
These results might support the hypotheses that TERTp-

Mut are not the unique event responsible to initiate an
oncogenic process explaining their presence in premalig-
nant lesions and non-hTERT expressing tumors. TERTpMut

usually occur in cancers with low rate of self-renewal, such
as brain tumors, liver, melanocytes and even low-grade
bladder cancers suggesting a role in triggering telomerase
activation [109, 110]. In adult gliomas, TERTpMut were
found in 70% to 80% of glioblastomas, followed by oligo-
dendrogliomas (60%-70%) and oligoastrocytomas (35%-
55%). However, TERTpMut are rare events in ependymoma
lesions [110, 111]. Urological malignancies have a different
prevalence of TERTpMut varying from rare or absent in
prostate cancer and testicular germ cell tumors to high fre-
quency amongst urothelial cancers. In urothelial bladder
cancer, mutations are present in up to 85% of the lesions,
which rank these alterations as one of the most frequent
genomic events in bladder cancer [112, 113]. However, the
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prevalence in renal cell carcinoma is low, at approximately
9% [106, 111–113]. Regarding thyroid cancer, the frequency
of these genetic alterations varies according to histology.
Papillary and follicular type lesions usually harbor 10-20%
whereas in poorly undifferentiated and anaplastic lesions
TERT mutations are found in 30-50% of the patients [107].
There is a stepwise increase in frequency of TERTpMut from
well differentiated to poorly differentiated lesions in thyroid
cancer being absent in medullary carcinomas [107, 114].
However, there are other cancers that do not harbor
TERTpMut (testicular germ cell tumors; breast cancer, colo-
rectal carcinoma, prostate cancer) but have telomerase acti-
vation [111]. These observations suggest that in hTERT-
dependent tumors without TERTpMut, other mechanisms
responsible for telomerase activation might be at play.

TERT promoter mutations: clinical relevance
Clinically, tumors carrying TERTpMut frequently express
higher levels of hTERT mRNA and telomerase activity
compared with those having a wild type promoter
highlighting the prognostic potential of TERTpMut and their
potential use as a clinical biomarker [90]. Several studies
have looked at the role of TERTpMut in cancer diagnosis
and prognosis. In urothelial bladder cancer patients,
TERTpMut were detected in tissue and urine and has been
proposed as a non-invasive diagnostic and prognostic
marker, associated with decreased disease-free survival
[102]. However, other studies did not find a clinical
correlation with disease outcomes [84, 112]. Wu et al. [115]
reported an important co-occurrence of TERTpMut and

TP53/RB1 mutations and suggested that they might co-
operatively contribute to the progression of bladder cancer.
In glioma, TERTpMut are distributed according to hist-

ology and are related to survival in combination with IDH1
mutations. Also, TERTpMut are not only prognostic factors
for poor clinical outcomes, but also predictors of radiother-
apy resistance [116–119]. Furthermore, BRAF/NRAS muta-
tions are associated with decreased disease-free and
melanoma-specific survival [120, 121]. In liver disease,
TERTpMut are present in pre-malignant nodules and pre-
dict high risk for advanced disease and reduced disease-free
and overall survival in hepatocellular carcinoma patients
[122, 123]. Thyroid cancer patients with TERTpMut are as-
sociated with clinically aggressive and recurrent disease,
with lower disease-free and overall survival when combined
with BRAF mutations [124–126]. TERTpMut are a moder-
ately prevalent genetic event in non-small cell lung cancer
(NSCLC) associated with patient age, gender and distant
metastasis [127]. These studies emphasize the hypothetical
existence of a companion mechanism, necessary not only
for telomerase activation but also to maintain the self-
renewal capacity allowing cancer disease progression in
TERTpMut patients [84, 112].
Current studies highlight the prognostic properties of

TERTpMut and their potential use as a clinical biomarker.
In general, these genetic alterations of the hTERT pro-
moter are associated with adverse outcomes in several
cancers. Nevertheless, recent studies show the presence of
companion genetic alterations in patients with worse out-
comes, suggesting the need for concomitant and possibly

Fig. 2 Mechanisms of hTERT regulation in cancer. Transcription factors and their binding sites, as well the positions of both hTERT promoter mutations,
C228T and C250T, the hypermethylated region upstream to TSS (THOR) and TERT-miRNAs are shown. The cancer-specific mutations within the core
promoter, at -124 and -146bp positions generate ETS binding motifs, leading to GABP transcription factor recruitment and consequently hTERT
transcription. Binding of transcriptional activators (c-Myc) and repressors (WT1 and CTCF) to the hTERT promoter may be controlled by DNA methylation,
in which methylated CpGs prevent their binding to the target sites, leading to hTERT activation (THOR region). MiRNAs targeting the 3’UTR promotes
translation repression of hTERT. Black dots represent methylated CpG sites. ETS: E-twenty-six; TSS: transcription start site; ATG: start codon
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synergistic events resulting in not only telomerase activa-
tion but also disease progression.
Unanswered questions remain to be elucidated related

to the diverse frequency of mutations amongst different
cancers and histological types. Also, the coexistence of
hTERT regulation mechanisms in the same tumor and
the eventual collaborative effects between TERTpMut and
other hTERT regulatory mechanisms resulting in differ-
ential telomerase activation is object for future studies.

hTERT regulation in Cancer: epigenetic mechanisms
hTERT promoter methylation
The epigenetic process of DNA methylation is crucial in
gene expression regulation. DNA methylation occurs
genome-wide at CpG sites usually located in non-coding
regions. This process, mediated by DNA methyltransfer-
ases, occurs in the context of dinucleotide sequence 5’-CG-
3’, often referred to as CpG methylation and consists of the
addition of a methyl group (-CH3) on the 5-carbon of a
cytosine (C) base followed by guanine (G) base. CpG di-
nucleotide sequences are spread throughout the genome,
but there are specific regions known as CpG islands where
high frequency of CpG dinucleotides is observed. 80% of
CpG sites are methylated in intergenic regions while most
sites in the promoter and exon 1 regions are unmethylated
[128]. CpG islands are usually clustered near the gene pro-
moters where transcription initiation occurs. About 70% of
the human gene promoters contain CpG islands, and there-
fore DNA methylation has been thought to play an import-
ant role in gene expression [128, 129]. Promoter DNA
methylation has been recognized as one of the most fre-
quent and stable ways of gene expression controlling mech-
anisms. Hitherto, promoter DNA methylation is thought to
promote gene silencing. In actively transcribed genes, the
promoter tends to be unmethylated, since DNA methyla-
tion has been associated with gene silencing by hindering
transcription factor binding or affecting chromatin architec-
ture [130]. In fact, in most cases, genes with methylated
promoters are usually silenced while genes with unmethy-
lated promoters are actively transcribed, the pattern ob-
served in oncogenes and tumor suppressors [131]. During
cancer progression, there is a genome-wide hypomethyla-
tion of CpG sites along gene body and hypermethylation of
CpG islands in gene promoter regions [132]. Thus, abnor-
mal DNA methylation is a hallmark of cancer cells and is
crucial in cancer development [133].
Despite the powerful role of recurrent hTERT promoter

mutations in hTERT activation in cancers, there are several
tumor types that exhibit low or no frequency of these mu-
tations (e.g. prostate and breast cancer) [134]. Thus, the
role of epigenetic mechanisms in cancer-specific hTERT
regulation has been a topic of study for past decade, and
several studies have shown contradicting effects of hTERT
promoter methylation on hTERT expression.

Although some authors have reported hypomethylation
in the CpG islands covering hTERT promoter, others iden-
tified increased DNA methylation in hTERT expressing
cancer cells [135–138]. In fact, hTERT was one of the first
genes in which methylation of its promoter sequence was
positively correlated with gene expression [135]. This cor-
relation among hTERT promoter methylation with hTERT
mRNA and telomerase activity suggests that methylation
of hTERT promoter may be implicated in hTERT regula-
tion, but in a different manner from other genes regulated
by promoter methylation [135].
As mentioned above, promoter methylation is often

associated with gene silencing. However, several studies
have shown that methylation of specific regions within
hTERT promoter, particularly, upstream of the hTERT
core promoter, is associated with gene activation [72].
The precise mechanisms by which the methylation pat-

tern of hTERT promoter results in hTERT activation is still
under investigation (Fig. 2). Recently, the possible role of
hTERT promoter methylation on activation of hTERT ex-
pression has been functionally shown [72, 139].
There are several explanations as to how hTERT pro-

moter methylation can result in hTERT activation: first
possibility is based on the prevention of repressive ele-
ments binding caused by DNA methylation at the re-
pressive region. If hTERT promoter is hypomethylated
(unmethylated), the transcriptional repressors would
bind to the promoter and block the transcriptional ma-
chinery (Fig. 2). However, if methylated, hTERT would
prevent this binding and therefore would allow the pro-
moter to be activated by appropriate transcriptional fac-
tors. An interesting observation from these results is
that proximal hTERT core promoter – allowing essential
drivers of gene expression to access the promoter is al-
most always hypomethylated, and the region upstream
of core promoter is often hypermethylated [140, 141].
Whether coincidental or reasonable, recurrent hTERT
mutations seem to occur in the unmethylated region,
which supports the hypothesis stating ETS family factors
binding to these sites activate hTERT expression. Evi-
dence has been also given by demethylation of repressor
binding sites by 5-aza-2-deoxycytidine, globally reducing
DNA methylation, and consequently resulting in re-
duced levels of hTERT transcription [142]. Also, factors
such as CTCF, which interact with hTERT promoter, are
known for organizing global chromosomal architecture,
and methylation-sensitive binding of CTCF may be
changing not only the accessibility but also chromo-
somal conformation and possible interactions with en-
hancers or silencers far away in distance. CTCF binds
adjacent to transcriptional start site (TSS) and represses
hTERT transcription, but DNA methylation prevents
CTCF binding and consequently allows for the activa-
tion of telomerase [143].
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Wilms tumor protein (WT1) is another repressor of
TERT expression [144]. WT1 exhibits methylation-
sensitive binding to DNA sequence, with reduced binding
when one or more methylated bases are present in the
binding sequence. WT1 binding sites exhibit increased
CpG methylation in cancer, which results in the blocking
of repressive effects and consequently hTERT expression
[135, 136]. MYC proto-oncogene encodes a ubiquitous
transcription factor (c-Myc) involved in the control of cell
proliferation and differentiation. c-Myc has a direct role in
induction of telomerase activity [145]. As CTCF and
WT1, c-Myc binding is also methylation-sensitive and its
binding is absent or reduced when binding site is methyl-
ated, resulting in reduced hTERT expression [146].
Another possible explanation is a more complex mechan-

ism involving DNA methylation and chromosome struc-
tural changes [147]. DNA methylation can contribute to
changes in chromatin conformation influencing gene ex-
pression by affecting DNA exposure to transcription factor
binding [148]. DNA methylation is often linked to histone
modifications and might control the accessibility of tran-
scription factors to the promoter. Specific conformational
changes caused by methylation of hTERT promoter may be
causing differential recruitment and binding of factors that
can drive hTERT expression in cancer [94]. There are
several histone post-translational modifications, such as his-
tone acetylation and methylation, that can affect the com-
paction state of chromatin, which influences the folding,
position and organization of DNA, thereby affecting gene
expression [149]. Generally, high levels of H3K4me3 and
H3K27ac marks are associated with active chromatin while
the gain of H3K9me and H3K27me3 marks has been linked
to transcriptional repression [150].

hTERT promoter methylation: clinical relevance
Several tumor types including malignant tumors of brain,
prostate, urothelium, colon, and blood have shown high fre-
quency of hypermethylation signature in a specific region
upstream of hTERT core promoter. More interestingly, even
in melanomas – where hTERT promoter mutations were
first identified and is known to be a mechanism of hTERT
activation – hTERT promoter methylation was associated
with hTERT upregulation [151]. Despite high prevalence of
this tumor-specific signature across various tumor types,
there has been little effort put into translating these findings
to apply in clinical settings. Methylation of a specific region
in the hTERT promoter was identified as potential biomarker
of tumor progression and survival in pediatric gliomas [72].
This region termed THOR (TERT Hypermethylated Onco-
logical Region) is hypermethylated in malignant tumours
and hypomethylated in normal tissues and stem cells [72].
THOR is 100% specific and 96% sensitive for detection of
hTERT expressing malignant neoplasms. THOR methylation
showed prognostic properties as well, and identified which

low-grade tumours would progress to high-grade ones and
predicted survival in a subset of paediatric cancers [72].
THOR was further explored in prostate cancer and has
shown its role as a potential marker with diagnostic and
prognostic properties [139]. These findings have been ex-
panded upon by multiple groups implicating hTERT pro-
moter methylation in hTERT upregulation, and further
demonstrating not only its diagnostic but, importantly, its
clinical significance in cancer prognostic including thyroid
cancer, acute myeloid leukemia/myelodisplastic syndrome,
esophageal carcinoma, meningioma, pituitary adenomas,
colorectal cancer and hepatocellular carcinoma) [72, 82, 139,
152–157]. In these studies, hTERT promoter hypermethyla-
tion was positively correlated with high hTERT expression,
telomerase reactivation and in the vast majority of the cases
correlated with worse clinical outcomes.

MicroRNAs
MicroRNAs (miRNAs) are short (20-23nucleotides) en-
dogenous non-coding RNA molecules that have a crucial
role in gene expression regulation [158, 159].
The biological importance of miRNAs has been recog-

nized and associated with the pathogenesis of cancer and
mechanisms that govern metastatic spread [160]. miRNAs
are implicated in genome instability, acting as tumour
suppressors or oncogenic drivers. Specifically, miRNAs
have been reported to play critical roles in fundamental
pathophysiological processes, such as cell proliferation,
apoptosis, differentiation and metabolism and present in
several human diseases, including cancer [158, 161–165].
Alterations in miRNA patterns in cancer are often associ-

ated with genomic events such as mutations, deletions, am-
plifications and transcriptional changes or due to defects in
enzymes involved in miRNA biogenesis. More recent stud-
ies however report that epigenetic alterations are crucial
regulators of miRNAs in cancer [166, 167]. Functionally,
miRNAs mediate the post-transcriptional gene silencing of
their target genes, inducing translation repression or
mRNA degradation [166]. Downregulation of miRNAs in
tumor tissue suggests a tumor suppressor function (sup-
pressor-miRNAs), since a decrease in their expression levels
normally contributes to oncogenesis. On the other hand,
overexpression of miRNAs that target tumor suppressor
genes have been associated with oncogenic activity (onco-
miRNAs) [167, 168]. Therefore, depending on their target
genes, miRNAs can act as tumor suppressors or oncogenes.
Different miRNAs have been described as important reg-

ulators of hTERT in multiple types of cancer. hTERT-target-
ing miRNAs regulate negatively its expression, inhibiting
tumorigenesis and are frequently downregulated in cancer
[167, 169]. hTERT-targeting miRNAs biology have been
widely studied and their function elucidated through pre-
clinical in vivo model-based validation studies [164, 170–
172]. MiRNAs can regulate hTERT in either direct or
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indirect manner. MiRNAs may directly bind to hTERT 3’
untranslated region (3’UTR), and interfere with hTERT
protein production in cancer cell lines [169, 170, 172, 173].
For example, downregulation of mir-138 was shown to be
associated with hTERT overexpression in anaplastic thyroid
carcinoma cells, and the enforced overexpression of mir-
138 induced a significant reduction in hTERT expression
through interaction with hTERT 3’UTR [173]. Additionally,
let-7g*, miR-133a, miR-342-5p and miR-491-5p downregu-
late telomerase activity and inhibit cell proliferation [169].
These miRNAs co-regulate hTERT and Wnt pathway-genes
and importantly, might regulate other genes involved in
oncogenesis, suggesting the presence of an oncogenic
miRNA regulatory network involving telomerase activation
[169, 174–176]. MiR-1182 is other hTERT 3’UTR modula-
tor that is downregulated in bladder cell lines and tumor
tissues, and whose overexpression was able to inhibit cell
proliferation, colony formation, and invasion [171].
MicroRNAs can also regulate hTERT indirectly by target-

ing transcription factors involved in hTERT regulation [94].
For example, mir-494 and mir-1294 were reported to
downregulate c-Myc, which is a known transcriptional acti-
vator of hTERT, in pancreatic cancer and esophageal squa-
mous cell carcinoma [94, 177]. Further, miR-34a, a known
tumor suppressor in multiple types of cancer, was reported
to induce cellular senescence by targeting c-Myc and
FoxM1 in the telomere pathway [176].

MiRNAs: Clinical relevance
MiRNAs are highly stable in a wide range of tissues, in-
cluding formalin-fixed paraffin embedded (FFPE) tissues
and body fluids. These characteristics highlight their use
as potential diagnostic and prognostic biomarkers, as well
as therapeutic targets [94, 164, 170–172, 178–180]. hTERT
miRNAs are aberrantly expressed in cancer, and thus con-
stitute a rich source of biological information with high
diagnostic and prognostic value. Specifically, miR-1182,
miR-1207-5p, miR-1266, miR-532 and miR-3064, which
bind within the hTERT 3’UTR, are downregulated and as-
sociated with a poor clinical outcome in bladder, gastric
and ovarian cancer [169–171]. Furthermore, miR-1182 in-
duced chemosensitivity to cisplatin in bladder cancer, and
thus, might eventually contribute for a better patient’s re-
sponse to cisplatin-based chemotherapy [171].
miRNA targeting of genes involved in telomere path-

way, might enable telomerase activity suppression and
cellular senescence and eventually allow the modulation
of other relevant cancer gene pathways, contributing
more effectively to inhibit cancer cells self-renewal [181,
182]. Specifically, ongoing clinical research (Phase I,
NCT01829971) are testing miR-34a mimics in multiple
solid malignancies [182].
Although there is still much to understand about the

complexity of telomerase regulation, the discovery of

miRNAs that target hTERT appears to be a promising ap-
proach to prevent and treat cancers that are telomerase-
dependent. However, further research is needed in order
to provide a more comprehensive view of miRNA-based
therapies in terms of delivery systems and toxicity effects
and this way promote their translation into clinical reality.

Future research
Telomerase activation is crucial for cancer development,
and was initially thought to be an attractive target for the
development of a novel biomarker and anti-cancer
therapeutics target [46]. Nonetheless, attempts to inhibit
telomerase was devoted to disappointment from the begin-
ning, with the inability of compounds to effectively repress
hTERT expression and the risk of long-term toxicity to nor-
mal stem cells and their self-renewal capacity. Future ap-
proaches might be centred on mechanisms responsible for
hTERT upregulation, as markers for clinical outcomes in
cancer. So far, hTERT promoter mutations and hTERT pro-
moter methylation are strong regulatory alterations that
affect telomerase activation and might become useful as
potential biomarkers in a wide range of tumors. Moreover,
recent studies on ependymomas revealed that the CpG
island methylator phenotype (CIMP) tumors, which are
associated with poor prognosis, are responsive to drugs that
target either DNA or H3K27 methylation [183].
Overall, further research is needed to confirm the poten-

tial of these mechanisms as drug-actionable biomarkers,
and establish them as non-invasive tools (circulating tumor
DNA or circulating tumor cells) with clinical application.

Conclusion
Cellular self-renewal is a hallmark of cancer which is regu-
lated by telomerase activation, and current studies have
shown different mechanisms involved in telomerase regu-
lation. Until recently, telomerase regulation was thought
to be controlled uniquely by transcriptional mechanisms.
However, different genetic and epigenetic mechanisms
have been showing a strong association with telomerase
reactivation in different cancers, and importantly showing
interesting properties as biomarkers – with diagnostic and
prognostic abilities. Particularly, hTERT promoter muta-
tions, hTERT promoter methylation and miRNAs target-
ing hTERT have gained special attention as mechanisms
associated with hTERT reactivation. hTERT promoter mu-
tations have been frequently identified as early events in
tumors with low self-renewal capacity and related to
worse clinical outcome. However, several important ques-
tions remain to be clarified regarding their role as a tumor
initiating mechanism or a long-standing process crucial
for oncogenesis and cancer progression. At an epigenetic
level, hTERT promoter hypermethylation have been posi-
tively correlated with telomerase reactivation acting as a
predictive marker for oncological outcomes in different
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cancers. miRNAs targeting hTERT have also been consid-
ered potentially useful clinical biomarkers, and as more
are identified, further avenues for the development of
effective cancer therapies are open.
These recent findings generate a spark of hope in advan-

cing our understanding of telomere biology. However, more
studies are needed in order to completely understand the
complex telomerase regulatory mechanisms and the pos-
sible interplay between these mechanisms. Future research
should be centred on the discovery of mechanisms respon-
sible for hTERT upregulation specifically in cancers, estab-
lishing correlations of these biological findings with clinical
outcomes and founding these mechanisms as relevant
biomarkers. Moreover, hTERT regulation remains a very
attractive therapeutic target. Understanding the mecha-
nisms responsible for hTERT activation might unveil
possible means to prevent the acquisition of aberrant self-
renewal capacity in cancer cells.
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