1,026 research outputs found

    Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Get PDF
    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes (Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes

    Effects of organically and conventionally produced feed on biomarkers of health in a chicken model

    Get PDF
    Consumers expect organic products to be healthier. However, limited research has been performed to study the effect of organic food on health. The present study aimed to identify biomarkers of health to enable future studies in human subjects. A feeding experiment was performed in two generations of three groups of chickens differing in immune responsiveness, which were fed identically composed feeds from either organic or conventional produce. The animals of the second generation were exposed to an immune challenge and sacrificed at 13 weeks of age. Feed and ingredients were analysed on macro- and micronutrients, i.e. vitamins, minerals, trace elements, heavy metals and microbes. The chickens were studied by general health and immune parameters, metabolomics, genomics and post-mortem evaluation. The organic and conventional feeds were comparable with respect to metabolisable energy. On average, the conventionally produced feeds had a 10 % higher protein content and some differences in micronutrients were observed. Although animals on both feeds were healthy, differences between the groups were found. The random control group of chickens fed conventional feed showed overall a higher weight gain during life span than the group on organic feed, although feed intake was mostly comparable. The animals on organic feed showed an enhanced immune reactivity, a stronger reaction to the immune challenge as well as a slightly stronger ‘catch-up growth’ after the challenge. Biomarkers for future research were identified in the parameters feed intake, body weight and growth rate, and in immunological, physiological and metabolic parameters, several of these differing most pronounced after the challeng

    Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy

    Get PDF
    We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton

    Imaging the essential role of spin-fluctuations in high-Tc superconductivity

    Get PDF
    We have used scanning tunneling spectroscopy to investigate short-length electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show that the superconducting gap and the energy Omega_dip, defined as the difference between the dip minimum and the gap, are both modulated in space following the lattice superstructure, and are locally anti-correlated. Based on fits of our data to a microscopic strong-coupling model we show that Omega_dip is an accurate measure of the collective mode energy in Bi-2223. We conclude that the collective mode responsible for the dip is a local excitation with a doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure

    Magnetic field induced charge and spin instabilities in cuprate superconductors

    Get PDF
    A d-wave superconductor, subject to strong phase fluctuations, is known to suffer an antiferromagnetic instability closely related to the chiral symmetry breaking in (2+1)-dimensional quantum electrodynamics (QED3). On the basis of this idea we formulate a "QED3 in a box" theory of local instabilities of a d-wave superconductor in the vicinity of a single pinned vortex undergoing quantum fluctuations around its equilibrium position. As a generic outcome we find an incommensurate 2D spin density wave forming in the neighborhood of a vortex with a concomitant "checkerboard" pattern in the local electronic density of states, in agreement with recent neutron scattering and tunneling spectroscopy measurements.Comment: 4 pages REVTeX + 2 PostScript figures included in text. Version to appear in PRL (minor stylistic changes, references updated). For related work and info visit http://www.physics.ubc.ca/~fran

    First direct observation of the Van Hove singularity in the tunneling spectra of cuprates

    Get PDF
    In two-dimensional lattices the electronic levels are unevenly spaced, and the density of states (DOS) displays a logarithmic divergence known as the Van Hove singularity (VHS). This is the case in particular for the layered cuprate superconductors. The scanning tunneling microscope (STM) probes the DOS, and is therefore the ideal tool to observe the VHS. No STM study of cuprate superconductors has reported such an observation so far giving rise to a debate about the possibility of observing directly the normal state DOS in the tunneling spectra. In this study, we show for the first time that the VHS is unambiguously observed in STM measurements performed on the cuprate Bi-2201. Beside closing the debate, our analysis proves the presence of the pseudogap in the overdoped side of the phase diagram of Bi-2201 and discredits the scenario of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands

    Get PDF
    AbstractWe have explored the possibilities of using human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) as a single immunoglobulin fold-based scaffold for the generation of novel binding ligands. To obtain a suitable protein library selection system, the extracellular domain of CTLA-4 was first displayed on the surface of a filamentous phage as a fusion product of the phage coat protein p3. CTLA-4 was shown to be functionally intact by binding to its natural ligands B7-1 (CD80) and B7-2 (CD86) both in vitro and in situ. Secondly, the complementarity determining region 3 (CDR3) loop of the CTLA-4 extracellular domain was evaluated as a permissive site. We replaced the nine amino acid CDR3-like loop of CTLA-4 with the sequence XXX-RGD-XXX (where X represents any amino acid). Using phage display we selected several CTLA-4-based variants capable of binding to human αvβ3 integrin, one of which showed binding to integrins in situ. To explore the construction of bispecific molecules we also evaluated one other potential permissive site diametrically opposite the natural CDR-like loops, which was found to be tolerant of peptide insertion. Our data suggest that CTLA-4 is a suitable human scaffold for engineering single-domain molecules with one or possibly more binding specificities
    • …
    corecore