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The loading pattern of fuel bundles in a reactor core determines the characteristics of the
reloading cycle. The problem of maximizing fuel utilization during a cycle may be formu-
lated as a nonlinear mixed integer programming (NLMIP) problem, but has until now mostly
been treated by heuristic optimization methods like simulated annealing. This paper evaluates
the performance of state-of-the-art nonlinear programming routines on a simplified model
of this problem, and compares results with available heuristic solutions.

1. Introduction

A nuclear reactor is operated in cycles, the duration T being 1 year to1 1
2 years in

practice. An important consideration in operating the nuclear reactor is the design of
a reloading pattern for each cycle. Light water reactors are usually batch refueled,
i.e. equal quantities of fuel from different fuel batches are placed in the core. The
different batches consist of fuel with varying degrees of burn-up. One typically has
three batches of fuel: fresh, once burnt (used once in an earlier cycle), and twice burnt.
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Figure 1. Example of a nuclear core with
a three fuel batch loading pattern.

At the end of the cycle, the oldest batch is discharged from the reactor as spent
fuel (figure 1).

After a cycle, the discarded fuel elements are replaced by fresh ones. All the
fuel elements are now reshuffled to obtain the original loading pattern. The fuel
elements which had been fresh at the start of the cycle are moved to the positions
reserved for once burnt elements in the loading pattern, etc. If the same procedure of
replacing and reshuffling is repeated for a number of years, an equilibrium cycle is
reached [9]. Once a reloading pattern is chosen, it can therefore be repeated. The
objective becomes to find a pattern that is optimal in some sense.

The most common objective is to maximize the discharge burn-up, with the
underlying idea of maximal fuel utilization while satisfying nominal power demand.
The resulting optimization problem is nonlinear mixed integer (NLMIP). Several
optimization approaches to this problem have been tried, with the recent trend towards
local search heuristics.

1. Successive linear programming [3,19].

2. Local search by pairwise interchange of fuel bundles (see [10,12,14,20]).

3. Simulated annealing [4,15,22].

Surveys of optimization approaches in reactor physics may be found in [11,16].
A natural question is whether the advances in software for nonlinear program-

ming may be utilized for this problem. In this paper, a simplified model of the reactor
reloading problem is formulated as a nonlinear mixed integer optimization problem.
The optimization formulation allows evaluation of the nonlinear mixed integer solver
Dicopt [23], as well as a convex branch and bound algorithm in conjunction with
state-of-the-art nonlinear (NLP) solvers, like Minos5 [13] and Conopt [6]. These
optimization results are compared to known heuristic solutions, obtained by pairwise
interchange of fuel bundles. The results show that the optimization approach

66



consistently gives the best known solutions, even though the heuristic solutions seem
to be surprisingly good.

This paper is organised as follows. Section 2 introduces the physical parameters
and governing equations of equilibrium cycle calculations, using the simplified model
of De Jong [9]. This model is also described to a large extent by Driscoll et al. in [5].
In section 3, the optimization problem is formulated, while section 4 gives some upper
bounds for the discharge burn-up in the optimization problem. In sections 5 and 6,
numerical results are given for two classes of instances.

2. The reloading parameters

We now introduce two parameters which play a role in the equilibrium cycle of a
reloading pattern. The reloading pattern places equal numbers of fuel elements from
n batches in N positions in the core, where N is a multiple of n. The first parameter
is the average power densities vector p = [ p1,…,pn]

T corresponding to the fuel batches,
and the second is the vector of fuel infinite multiplication factors of the fuel batches,
kj , ( j = 1,…,n). The parameter gives the ratio of production of neutrons to the loss of
neutrons for the different fuel batches. It refers to an infinite array of identical fuel
assemblies, thus excluding neutron losses through leakage out of the reactor. The fuel
infinite multiplication factors depend only on the material composition of the fuel
assembly during operation and not on the geometry of the reactor or the position of
the material therein.

The parameters kj are closely related to the fuel densities of the fuel batches and
decrease with time t during the cycle. The parameter kj (0), ( j = 1,…,n) represents
begin of cycle (BOC) fuel at time t = 0 and kj (T), ( j = 1,…,n) represents end of cycle
(EOC) fuel at t = T.

The EOC values kj (T) and parameters pj  appear in three sets of equations, to be
discussed in turn.

2.1. Burn-up equations

The first set of equations gives the EOC values of kj (T) as a function of batch power
pj . The linear approximation is used for this in [9]:

for all batches j = 1,…,n. In this equation, α > 0 is a fuel characteristic constant, M
is the (constant) initial mass of a fresh fuel element, and Ptot is the (constant) total
capacity of the reactor. The burn-up equations give an indication of the reduction in
“fuel density” of the different batches during a cycle.

k T k
p P

M
Tj j

j tot
( ) ( ) ( )= −0 1α
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2.2. Equilibrium equations
The second set of equations gives equilibrium cycle conditions. The EOC fuel of
batch 1, k1(T), becomes BOC fuel for batch 2, k2(0), etc. For an equilibrium cycle it
therefore holds that

for j = 2,…,n. The value of k1(0) for the fresh fuel batches is always the same, and
kn(T) is discharged from the reactor as spent fuel. It is desirable to have as little fuel
as possible in the discarded batch, i.e. to have maximal fuel utilization. The objective
function of reloading pattern design is therefore usually to minimize kn(T) over all
possible reloading patterns.

From combining (1) and (2), we find a system of n equations:

k k Tj j( ) ( ) ( )0 21= −
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In the last equation of (3), the normalization of the power fractions ∑ j pj = 1 is used.
The quantity

α B k T kd n≡ −( ) ( )1 0

is called the discharge burn-up, and gives the reduction in “fuel density” of the oldest
batch during a cycle. Furthermore, it follows from the last equation of (3) that αBd

depends linearly on the cycle length T:

α α
B

P T
Md
tot= .

This shows that the cycle length is maximized by maximizing the discharge burn-up:
if the reloading pattern can be improved to increase discharge burn-up by a given
percentage, then the cycle length increases with the same percentage.

A full-sized nuclear power plant produces a yearly amount of electricity worth
about $500 million. An improved reloading pattern yielding as little as 1% more
power from the same amount of fuel can therefore result in savings of several million
dollars per year.

2.3. Coupling eigenvalue equation

The third set of equations concerns the (N × N) fast group coupling coefficient
matrix G [7], where Grs (r, s = 1,…,N) is the probability that a neutron produced at
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fuel location (or bundle) s will be absorbed in bundle r. This leads to the following
eigenvalue equation for the vector φ of fast neutron fluxes [7], φi (i = 1,…,N) in the
bundles:

φ φ= 1
4

k
GK

eff
, ( )

where K is a diagonal matrix with the infinite fuel multiplication factors on the
diagonal which depends on the loading pattern as follows:

(5)Kii = kj if fuel from batch j is placed in bundle i.

Note that K is uniquely determined by a given pattern – since each bundle (or fuel
location) can contain one fuel bundle, each kj , ( j = 1,…,n) appears exactly Nyn times
on the diagonal of K.

The eigenvalue keff is introduced in (4), since for an arbitrary arrangement of
fuel elements in the core, the production of neutrons will not balance the loss of
neutrons due to absorption and leakage. The parameter keff is simply the ratio between
these two quantities. To have a stationary operating reactor, keff must be equal to unity
throughout the operation cycle. The reactor is then said to be critical. In practice, this
is accomplished by introducing sufficient neutron absorbers in the core, e.g. control
rods. The cycle ends when all control absorbers are removed and the reactor can no
longer be kept critical.

Only the EOC values for the infinite multiplication factors are of interest here,
and these appear in (3) and in (4), where the latter is evaluated at EOC, i.e. at time
t = T.

Each fuel bundle has an associated nodal power value defined as

P K i Ni ii i= = …φ , , , .1 (6)

The batch power values pj are simply the summed nodal powers taken over bundles
containing fuel from batch j. More formally,

p k j nj j i
i I j

= = …
∈
∑ φ , , , ,1 (7)

where I j is the index set of bundles containing fuel from batch j.
We have now given the governing equations which determine the discharge

burn-up for a given loading pattern. The next step is to formulate an optimization
problem to find an optimal loading pattern which maximizes the burn-up.

3. Formulating an optimization problem

To model the set of allowable loading patterns, we introduce the binary variables

ξi j
i j

= 



1
8

if bundle  contains fuel type ,

0 otherwise.
( )
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A feasible pattern must therefore satisfy the following transport equations:

  

ξ

ξ
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(9)

The first equation states that equal amounts of fuel from each of the n batches should
be placed in the N bundles. The second equation states that only one type of fuel is
placed in a given bundle.

We associate an (N × n) matrix X = [ξ i j ] with a given pattern, and define

[ ( , )] [ ],    , , ,  , , .W X i N j nij i i jφ φ ξ= = … = …1 1 (10)

In other words, W is the matrix obtained by multiplying each row i of X by φ. Using
the vector k(T) associated with the different fuel batches, we can construct the
diagonal matrix K in (5) as before: [K] ii = kj (T) if fuel from batch j is placed in
bundle i. It is easy to show that Kφ = W(X, φ)k(T), where φ denotes the vector of
fluxes. We can therefore rewrite the coupling eigenvalue equation (4) as

φ φ= GW X k T( , ) ( ). ( )11

Equation (11) is a trilinear equation in the binary variables ξ i j  and the nonnegative
variables φi and kj (T). Using the new notation, equations (7) become the system of
trilinear equations

p k T j nj j i i j
i

N

= = …
=
∑( ) , , , ,φ ξ

1

1 (12)

where we require that the values pj be normalized:

p j
j

n

=
=
∑ 1

1

. (13)

Additionally, we have nodal power peaking constraints which limit the nodal power
density to avoid fuel melt. The constraints take the form

(14)

where the nodal power can be expressed as

P
f
N

P i Ni l
l

N

≤ = …
=
∑lim , , , ,

1

1

P k Ti i ij j
j

n

=
=
∑φ ξ ( ),

1

(15)
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using the new notation, and flim is a constant. The value flim = 1.8 is characteristic for
the Borssele nuclear power plant, a medium sized reactor in the Netherlands for
which the calculations in the following sections are done. The nodal power peaking
constraints are also trilinear. Since

P pl j
j

n

l

N

= =
==
∑∑ 1

11

by (13), it follows that (14) simplifies to

P
f
Ni ≤ lim . ( )16

In other words, the nodal powers may not exceed a critical value.
The variables in our optimization problem are the components of the vectors φ,

p, P, and k(T), as well as Bd, and the binary variables ξ i j .
The objective function to be minimized is the discharge fuel:

or alternatively the discharge burn-up αBd can be maximized.
To summarize, we state the optimization model concisely:

Optimization problem
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A few remarks about this model:

1. The optimization problem is a nonlinear mixed integer programming problem,
where the nonlinear constraints are bilinear and trilinear. The number of vari-
ables equals nN + 2(n + N) + 1 and the number of constraints 5(N + n) + 1.

2. The problem is non-convex, i.e. a global optimization problem which may have
a large number of local optima.

3. For the purpose of computation, the integrality constraints ξ i j ∈{0, 1} are
relaxed to 0≤ ξ i j ≤ 1, as is customary. The solution of the resulting problem will
be referred to as the relaxed solution. This relaxed solution has the following
physical interpretation: The value ξ i j  gives the fraction of fuel type j which is
placed in bundle i. That is, the relaxed solution allows a mixture of fuel types in
a given bundle.

4. The optimal integer solution need not be an integer “neighbour” of the relaxed
solution, but may be arbitrarily far removed from it. One way of searching for
a globally optimal integer solution is to “branch and bound” through the whole
0–1 tree. Even this is not guaranteed to work – a global optimization problem
must be solved at each node in the 0–1 tree, and it is in general not possible to
guarantee the global optimality of these solutions. It may happen that a node is
“killed” incorrectly if a “bad” local minimum is found for the corresponding
subproblem.

4. Upper bounds for the discharge burn-up

The nonconvexity of the relaxed problem makes it difficult to quantify the “good-
ness” of obtained solutions. Known bounds on the optimal burn-up value are therefore
of importance. In this section, some known worst-case bounds are given, and sugges-
tions for alternative (convex) relaxations with guaranteed global optimality are made.

De Jong shows in [9] that the following expression for the discharge burn-up
holds:

where L = 1 – ∑n
i =1φ i is a first-order approximation to the out of core leakage

probability [9]. Physical considerations require that L > 0 as L = 0 corresponds to an
infinite reactor. To prove that L > 0 holds for this model, we take the l1-norm on both
sides of equation (4):

αB
k L

p
d
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by (10), (12) and (13), where ‖G‖1 = max1≤ j ≤ N∑N
i =1gij . This implies

  L G≥ −1 181‖ ‖ . ( )

From the definition of G in terms of probabilities it follows that ‖G‖1 is strictly
smaller than one, which shows that L > 0. Hence, (18) and p1 = … = pn = 1yn
determine the following upper bound in (17):

follows by taking L = 0 in (17).
By using a similar argument as above and utilizing the infinity norm ‖G‖∞

= max1≤ i ≤ N∑N
j =1gij , one obtains the upper bound φi ≤ flimyN, i = 1,…,N on the neutron

fluxes from (4) and (16).
The relaxation described in the previous section does not guarantee an upper

bound on the objective, as the resulting problem is nonconvex. The Shor relaxation
[17] of the problem may alternatively be used, with a guaranteed upper bound on the
optimal burn-up value. The Shor relaxation was introduced as a way to obtain bounds
for indefinite quadratic problems. The problem presented here can be rewritten as a
quadratic problem as all the nonlinear constraints are multilinear. The Shor relaxation
can be formulated as a semidefinite programming problem, for which a new class of
efficient  polynomial time algorithms is available [21].

Unfortunately, no guarantee can be given that the Shor relaxation yields a useful
bound for this problem, but it remains a promising option for future research.

5. Computational results

We consider a specific numerical instance of the optimization problem with N = 12
bundles and n = 2, 3 or 4 different types of fuel to be placed in the bundles in some
loading pattern. As before, the bundles must contain equal amounts of each fuel type.
The total number of possible patterns is given by N!y((Nyn)!)n and is shown in table 1
for this instance. The number of possible patterns is too large in general to allow
complete enumeration in a reasonable time. Moreover, the possible patterns increase
exponentially with increasing problem size.

The results presented here were obtained by using the GAMS software
package [1]. GAMS (General Algebraic Modelling System) is a high level language,
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Table 1

Number of possible loading patterns
for different batch sizes.

N = 12 bundles

Batches Possible patterns

2 924
3 34650

4 369600

which enables easy statement of an optimization problem. Symbolic differentiation
of nonlinear functions, efficient storage, etc. are done automatically, and state-of-the-
art optimization solvers are incorporated in the software. These include well-known
solvers like the sequential linearly constrained programming (SLC) solver Minos5
[13] and the generalized reduced gradient method (GRG) solver Conopt [6]. The
results for the relaxed problems presented here were obtained by using the solver
Conopt. Conopt proved to be more robust on these problems than Minos5. Minos5
could not obtain a feasible solution from the same range of starting points as Conopt
could. Moreover, problems in maintaining feasibility were experienced with Minos5
for some problems. These remarks are consistent with the general view that Conopt
often outperforms Minos5 on problems with mostly nonlinear constraints, as is the
case here.

The GAMS results are compared to local search heuristic results of de Jong [9],
where an integer solution is found by performing all improving 2-bundle pairwise
interchanges (PI). These heuristic solutions are the best patterns obtained after a
number of trails from different starting patterns. As such, it is difficult to assign a
computational time value to the PI procedure which can reasonably be compared
to optimization solvers. We therefore omit such a comparison and focus on the quality
of obtained solutions, although CPU times for the solvers are given as an indication
of the computational effort involved.

Table 2 shows the best heuristic PI solutions in [9] obtained from different start-
ing points. The loading patterns are given as rows of 12 numbers, where value j of the
i th element in the row indicates that fuel from batch j is placed in bundle i. Note that
the heuristic solutions are dependent on the starting patterns in general.

Table 3 gives the GAMS solutions by the NLMIP solver Dicopt [23], and the
best relaxed solution in each instance is also shown. The mixed integer (MIP)
subproblems generated by Dicopt were solved by the solver OSL [24], while the
relaxed nonlinear problems were solved by Conopt. The MIP solver OSL was chosen
over the MIP solver ZOOM [18], as the default branching rule of the latter solver
required too much memory for storage of the node table for the four batch problems.
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Table 2

 Reloading patterns obtained by the PI heuristic from different starting patterns.
The discharge burn-up corresponding to each pattern is shown.

Batches Starting pattern Final pattern Burn-up

2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 1 1 1 1 2 2 2 1 2 0.2115
2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 2 2 1 0.2119
3 1 1 1 1 2 2 2 2 3 3 3 3 3 1 3 1 2 1 2 2 1 3 3 2 0.2336
3 3 3 3 3 2 2 2 2 1 1 1 1 2 3 2 1 1 1 3 3 3 2 2 1 0.2394
4 1 1 1 2 2 2 3 3 3 4 4 4 3 4 1 2 1 2 1 3 4 4 3 2 0.2503
4 4 4 4 3 3 3 2 2 2 1 1 1 3 4 1 3 1 2 2 2 4 3 4 1 0.2496

The CPU times for the solvers are given for execution on a HP-9000 workstation
with 48MB memory. Since the Dicopt solutions do not compare favourably with
the heuristic solutions, a convex branch and bound implementation in the GAMS
language was also done. Table 4 gives the convex branch and bound solutions. The
solver Conopt was used to solve the subproblems. The branching was done over all
solutions of the transport equations, by using the following simple algorithm:

Step 1. For i = 1,…,N do

Step 2. Live nodes correspond to fixed 0–1 values for ξ i j , î < i. In other words, a
live node corresponds to some (potentially optimal) allocation of fuel types
to bundles 1,…,i – 1. Now loop over all live nodes:

Table 3

Reloading patterns obtained by the solver Dicopt with corresponding
burn-up values and burn-up values for the relaxed problems.

Batches Reloading pattern Burn-up Relaxation

2 2 2 1 2 1 1 2 2 1 2 1 1 0.2072 (6.86s) 0.2165 (0.65s)
3 2 3 2 1 1 1 3 2 3 3 2 1 0.2383 (14.67s) 0.2430 (2.60s)
4 3 2 3 1 1 4 1 4 2 3 4 2 0.2512 (41.53s) 0.2586 (3.38s)

Table 4

Reloading patterns obtained by branch and bound with corresponding burn-up values.
The number of nodes evaluated in the b&b tree is shown.

Batches Reloading pattern Burn-up Relaxation b&b nodes

2 2 2 1 1 1 1 2 2 1 2 2 1 0.2119 (9.85s) 0.2165 20
3 2 2 3 1 1 1 3 2 3 3 2 1 0.2394 (33.88s) 0.2430 26
4 3 2 4 1 1 2 3 4 4 3 2 1 0.2557 (193.9s) 0.2586 81
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(a) For j = 1,…,n do

(i) Fix ξ i j = 1 and ξ i j = 0, k ≠ j. In other words, place fuel j in bundle i.
(ii) Solve the optimization problem. If the objective is worse than the

best known integer solution, then “kill” the current node. Otherwise
add the node to the live node table.

The best heuristic solution was used as an initial lower bound for the branch and
bound procedure. The number of nodes in the 0–1 tree which were evaluated before
obtaining the optimal solution is also shown in the table.

Table 5 summarizes the above results. The column marked “Bound” gives the
upper bound from (19), and the column “Relaxed” gives the relaxed solution.

Remarks on tables 2 to 5:

1. For two batches (n = 2), both (PI) solutions have better objective values than the
Dicopt solution. The (PI) objectives are also within 1% of the best relaxed
solution obtained by GAMS. The branch and bound gives the same pattern as
the best (PI) solution.

2. For three batches (n = 3), the GAMS nonlinear mixed integer solver Dicopt
produced a pattern identical to the result in table 4 except that the fuel types in
bundles 8 and 10 were switched. The Dicopt solution can therefore be improved
by PI to obtain the best PI solution. Note, however, that the Dicopt solution is
superior to the second best PI solution, illustrating again that the heuristic solu-
tions are dependent on the starting configurations. The best heuristic solution
differs from the relaxed solution by less than 2%. The branch and bound yielded
a slightly superior solution to the best PI solution. It is of interest to note that
two completely different patterns correspond to virtually the same objective
value.

3. The branch and bound solution for four batches is roughly 2% better than the
best PI solution. It seems, therefore, that the branch and bound procedure may
be more efficient than PI for larger problems, but larger problem instances will
have to be evaluated to confirm this. An improvement of 2% may seem small,
but is financially significant in view of the remarks in section 3.

Table 5

Comparison of burn-up values given by different solution strategies. The best known
relaxed solution and best known upper bound on the optimal burn-up is given.

Batches PI1 PI2 Dicopt b&b Relaxed Bound

2 0.21154 0.21193 0.20719 0.21193 0.21649 0.2556
3 0.23362 0.23936 0.23833 0.23938 0.24296 0.2875
4 0.25026 0.24961 0.25116 0.25565 0.25864 0.3067
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4. The branch and bound solution is always within 2% of the corresponding relaxed
solution. If global optimality of the relaxed solutions is assumed, a measure of
goodness of the loading patterns is obtained. In other words, the assumption
implies that no patterns exist with burn-up more than 2% higher than the branch
and bound solutions. In computational trails, the same optimal value of the
relaxed problem is always obtained, but for different local minima. This may
suggest global optimality of the relaxed solutions, but attempts to prove this have
so far been unsuccessful.

Unfortunately, the bounds from (19) are not tight, as is clear from table 5. This
further stresses the importance of pursuing new strategies to find globally
optimal relaxed solutions, as suggested in section 4.

6. A second class of problem instances

We now consider the case where the bundles in the core have different volumes. In
particular, full and half sized bundles may be used. In figure 2, a model of the
Borssele reactor core with 96 bundles is shown.

Octant symmetry of the reloading pattern is required, and only the bundles
marked 1,…,14 are therefore considered in this case. The bundles 1, 7, 11, 14 are
“half-bundles”, divided in two by the diagonal and with equal halves in two octants.
The problem remains to distribute equal amounts of fuel from the different batches
among the bundles. If a given fuel type is assigned to a half bundle, the same fuel
type must also be assigned to some other half bundle.

The optimization model must be modified only slightly to allow for the half-
bundles. The transport equations (9) become

Figure 2. 96-bundle nuclear core.
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where υ i is the volume (one or one half) of bundle i.
The nodal power densities Pi must also be multiplied by the nodal volume to

obtain the nodal power. This also holds for the batch power densities pj , j = 1,…,n.
The new equations are

The other equations in the previous optimization formulation remain unchanged. The
matrix G is, however, now defined differently [9], and is no longer bounded by
‖G‖∞ < 1 and ‖G‖1 < 1. The bound in (20) still holds, if L ≥ 0 is added as a constraint
to the optimization problem.

7. Results for the second class of instances

We consider loading patterns with two, three and four different fuel types (batches).
Figures 3, 4 and 5 reproduce the PI heuristic solution for two fuel batches as obtained
in [9]. In the figures, the bundles are shaded according to the fuel type – the fresh fuel
is the lightest and the most burnt fuel the darkest. (For two-fuel batches, all the bundles
are therefore black or white). The three different starting points therefore yield the
same PI solution. The GAMS solver Dicopt and the branch and bound strategy obtain
the same solution.

The heuristic solution for three batches depends on the starting pattern, as can
be seen in figures 6, 7 and 8. The pattern produced by Dicopt for three-fuel batches
is shown in figure 9. To give some idea of the associated physical characteristics of
the loading pattern, the corresponding nodal power graph and after-cycle fuel density
graph are also shown. The power graph shows that the highest power corresponds to
the freshest fuel (as may be intuitively expected). For example, there is a central
region of relatively low power values, as the pattern has older fuel in the central
bundles. (Patterns with fresh fuel in the middle violate the nodal power peaking
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Figure 5. Third heuristic solution: 2-batch starting pattern with final solution.

constraints.) The fuel density graph shows that lowest density is associated with the
oldest fuel.

The branch and bound procedure for three fuel batches again yielded the same
pattern as the best (PI) solution.

Before we quantitatively compare the different solutions, we give the results for
four batches (figures 10 to 14).

Figure 3. First heuristic solution: 2-batch starting pattern with final solution.

Figure 4. Second heuristic solution: 2-batch starting pattern with final solution.
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Figure 6. First heuristic solution: 3-batch starting pattern with final solution.

Figure 7. Second heuristic solution: 3-batch starting pattern with final solution.

Figure 8. Third heuristic solution: 3-batch starting pattern with final solution.

More details on the branch and bound solutions are given in table 6. Once again,
only a small percentage of the total nodes had to be evaluated.

Table 7 now compares the heuristic, Dicopt, and branch and bound solutions.
The solutions times as reported by GAMS are included in brackets where relevant.
The upper bound from (20) is given in the column marked “Bound”.
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Some remarks on table 7:

1. For 2 batches, the same solution was obtained by all three solution methods.

2. For 3 batches, the Dicopt solution was different from the PI solutions, but almost
equally as good. Moreover, it could not be further improved by the heuristic.
The branch and bound yielded the best PI solution.
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Figure 11. Second heuristic solution: 4-batch starting pattern with final solution.

Figure 10. First heuristic solution: 4-batch starting pattern with final solution.

Figure 9. Reloading pattern obtained by the solver Dicopt for the 3-batch problem,
with nodal power and fuel density graphs.



Figure 12. Third heuristic solution: 4-batch starting pattern with final solution.

Table 7

Burn-up values for reloading patterns obtained via different solution strategies. For each
problem the best known relaxed solution and upper bound on the optimal value are shown.

Batches PI1 PI2 PI3 Dicop b&b Relaxation Bound

2 0.21008 0.21008 0.21008 0.21008 (13.84s) 0.21008 0.21406 0.2579
3 0.23421 0.23687 0.23687 0.23683 (43.41s) 0.23687 0.23991 0.2901
4 0.25141 0.24937 0.25047 0.25006 (311.4s) 0.25178 0.25526 0.3094

Figure 13. Reloading pattern obtained by branch and
bound with the Conopt solver for the 4-batch problem.

Figure 14. Reloading pattern obtained by
the solver Dicopt for the 4-batch problem.

Table 6

Burn-up values for reloading patterns obtained by convex branch and
bound with the solver Conopt. The relaxed solution, number of possible
patterns, and number of nodes evaluated in the b&b tree are shown.

Batches Burn-up Relaxation Possible patterns b&b nodes

2 0.2101 (29.68s) 0.2141 (0.70s) 1932 55
3 0.2369  (123.8s) 0.2399 (1.350s) 85050 114
4 0.2518 (795.9s) 0.2553 (2.74s) 974400 271
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3. For 4 batches, the Dicopt algorithm yielded the pattern in figure 14. This result
was obtained by Dicopt using the nonlinear solver Conopt and the mixed integer
programming solver OSL [24]. The associated burn-up is slightly worse than
the best obtained, which again shows that several patterns with similar burn-up
values are possible.

The solution obtained by branch and bound was superior to the best PI result, by
about one percent. As discussed earlier, an improvement of this size can be
viewed as significant.

8. Conclusion

A simplified mathematical model for describing reloading pattern design in a nuclear
reactor has been formulated here as a nonlinear mixed integer optimization problem
(NLMIP). The objective is to maximize the length of operating cycle by maximizing
the burn-up of the fuel to be discharged. Two optimization strategies have been
compared to known heuristic solutions obtained by pairwise interchange (PI) of fuel
bundles.

The two optimization methods are a new NLMIP solver Dicopt, and a nonlinear
branch and bound (b&b) algorithm, both employing state-of-the-art nonlinear pro-
gramming (NLP) solvers. The solvers Dicopt (NLMIP) and Conopt (NLP) (used in
b&b) proved sufficiently robust to generate integer solutions.

Notable is that the different methods often generate different loading patterns
with only small differences in objective values. This aids the goal of finding a set of
“good loading patterns”, from which one can be chosen from other considerations or
used as trial solutions in more complicated mathematical models.

For the largest problems, our implementation of the b&b with Conopt produces
the best solutions. Surprisingly, the heuristic (PI) solutions proved competitive with
the b&b solutions, and in general better than the Dicopt solutions. Nevertheless, the
improved b&b solutions correspond to increases in operating cycle length of up to
2%, which would result in large yearly monetary savings if it could be realized in
practice.

The relaxed solutions by Conopt give an upper bound on the optimum under the
assumption of global optimality of the relaxed solution. The best integer solutions
obtained are within 2% of this bound in each case.

It remains an open problem to prove global optimality for the best obtained
integer solutions, or to obtain a tight upper bound on the optimal value. A promising
future option for obtaining a good upper bound is to solve the Shor dual of the
optimization problem.
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