43 research outputs found

    Social immunity in the honey bee: do immune-challenged workers enter enforced or self-imposed exile?

    Get PDF
    Animals living in large colonies are especially vulnerable to infectious pathogens and may therefore have evolved additional defences. Eusocial insects supplement their physiological immune systems with ‘social immunity’, a set of adaptations that impedes the entrance, establishment, and spread of pathogens in the colony. We here find that honey bee workers (Apis mellifera) that had been experimentally immune-challenged with bacterial lipopolysaccharide (LPS) often exited the hive and subsequently died; some individuals were dragged out by other workers, while others appeared to leave voluntarily. In a second experiment, we found that healthy workers treated with surface chemicals from LPS-treated bees were evicted from the hive more often than controls, indicating that immune-challenged bees produce chemical cues or signals that elicit their eviction. Thirdly, we observed pairs of bees under lab conditions, and found that pairs spent more time apart when one member of the pair had received LPS, relative to controls. Our findings suggest that immune-challenged bees altruistically banish themselves, and that workers evict sick individuals which they identify using olfactory cues, putatively because of (kin) selection to limit the spread of pathogens within colonies

    The Short Rotation Period of Hi'iaka, Haumea's Largest Satellite

    Get PDF
    Hi'iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified the rotation period of Hi'iaka to be ~9.8 hrs (double-peaked). This is ~120 times faster than its orbital period, creating new questions about the formation of this system and possible tidal evolution. The rapid rotation suggests that Hi'iaka could have a significant obliquity and spin precession that could be visible in light curves within a few years. We then turn to an investigation of what we learn about the (presently unclear) formation of the Haumea system and family based on this unexpectedly rapid rotation rate. We explore the importance of the initial semi-major axis and rotation period in tidal evolution theory and find they strongly influence the time required to despin to synchronous rotation, relevant to understanding a wide variety of satellite and binary systems. We find that despinning tides do not necessarily lead to synchronous spin periods for Hi'iaka, even if it formed near the Roche limit. Therefore the short rotation period of Hi'iaka does not rule out significant tidal evolution. Hi'iaka's spin period is also consistent with formation near its current location and spin up due to Haumea-centric impactors.Comment: 21 pages with 6 figures, to be published in The Astronomical Journa

    Animals, protists and bacteria share marine biogeographic patterns

    Get PDF
    Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales

    Publisher correction: Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-019-47899-7, published online 09 August 201

    The gender gap in science: How long until women are equally represented?

    Get PDF
    Women comprise a minority of the Science, Technology, Engineering, Mathematics, and Medicine (STEMM) workforce. Quantifying the gender gap may identify fields that will not reach parity without intervention, reveal underappreciated biases, and inform benchmarks for gender balance among conference speakers, editors, and hiring committees. Using the PubMed and arXiv databases, we estimated the gender of 36 million authors from >100 countries publishing in >6000 journals, covering most STEMM disciplines over the last 15 years, and made a web app allowing easy access to the data (https://lukeholman.github.io/genderGap/). Despite recent progress, the gender gap appears likely to persist for generations, particularly in surgery, computer science, physics, and maths. The gap is especially large in authorship positions associated with seniority, and prestigious journals have fewer women authors. Additionally, we estimate that men are invited by journals to submit papers at approximately double the rate of women. Wealthy countries, notably Japan, Germany, and Switzerland, had fewer women authors than poorer ones. We conclude that the STEMM gender gap will not close without further reforms in education, mentoring, and academic publishing

    Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species

    Get PDF
    Este artículo contiene 10 páginas, 3 figuras.The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species’ range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.L.E.H. was supported by the Natural Environmental Research Council (grant no. NE/L002531/1) and research in South Africa was supported by the Newton Fund (grant no. ES/N013913/1).Peer reviewe

    Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water

    Get PDF
    Environmental DNA (eDNA) surveys are increasingly being used for biodiversity monitoring, principally because they are sensitive and can provide high resolution community composition data. Despite considerable progress in recent years, eDNA studies examining how different environmental sample types can affect species detectability remain rare. Comparisons of environmental samples are especially important for providing best practice guidance on early detection and subsequent mitigation of non-indigenous species. Here we used eDNA metabarcoding of COI (cytochrome c oxidase subunit I) and 18S (nuclear small subunit ribosomal DNA) genes to compare community composition between sediment and water samples in artificial coastal sites across the United Kingdom. We first detected markedly different communities and a consistently greater number of distinct operational taxonomic units in sediment compared to water. We then compared our eDNA datasets with previously published rapid assessment biodiversity surveys and found excellent concordance among the different survey techniques. Finally, our eDNA surveys detected many non-indigenous species, including several newly introduced species, highlighting the utility of eDNA metabarcoding for both early detection and temporal / spatial monitoring of non-indigenous species. We conclude that careful consideration on environmental sample type is needed when conducting eDNA surveys, especially for studies assessing community change

    A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon

    Get PDF
    This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 654008.Accurate parentage assignment is key for the development of a successful breeding program, allowing pedigree reconstruction from mixed families and control of inbreeding. In the present study we developed a workflow for the design of an efficient single nucleotide polymorphism (SNP) panel for paternity assignment and validated it in Atlantic salmon (Salmo salar L.). A total of 86,468 SNPs were identified from Restriction Site Associated DNA Sequencing (RAD-seq) libraries, and reduced to 1517 following the application of quality control filters and stringent selection criteria. A subsample of SNPs were chosen for the design of high-throughput SNP assays and a training set of known parents and offspring was then used to achieve further filtering. A panel comprising 94 SNPs balanced across the salmon genome were identified, providing 100% assignment accuracy in known pedigrees. Additionally, the panel was able to assign individuals to one of three farmed salmon populations used in this study with 100% accuracy. We conclude that the workflow described is suitable for the design of cost effective parentage assignment and traceability tools for aquaculture species.PostprintPeer reviewe

    Muscle-specific ablation of glucose transporter 1 (GLUT1) does not impair basal or overload-stimulated skeletal muscle glucose uptake

    Get PDF
    Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle

    Trade-Offs Between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What\u27s behind the term?” by Pawlowski et al., (2020)

    Get PDF
    In a recent paper, “Environmental DNA: What\u27s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring,” Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived
    corecore