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Abstract 

 

Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns 

across the tree of life. Research describing these patterns at both regional and global scales has 

traditionally focussed on the study of metazoan species. Consequently, there is a limited 

understanding of cross-phyla biogeographic structuring, and an escalating need to understand the 

macroecology of both microscopic and macroscopic organisms. Here we used environmental 

DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and 

bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably 

consistent biogeographic structure across the kingdoms of life despite billions of years of 

evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom 

found that environmental conditions, such as temperature, and to a lesser extent, anthropogenic 

stressors such as fishing pressure and pollution, explained some of the observed variation. 

Additionally, metazoans displayed biographic patterns that suggested regional biotic 

homogenisation. Against the backdrop of global pervasive anthropogenic environmental change, 

our work highlights the importance of considering multiple domains of life to understand the 

maintenance and drivers of marine biodiversity patterns across broad taxonomic, ecological and 

geographical scales. 
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Introduction 

 

Researchers have long recognised the importance of grouping biota into distinct, geographically 

separated regions. Delineating these biogeographic areas is important to understand the factors 

shaping the range limits of species1, to designate key geographic areas for biodiversity 

conservation2 and to predict biological responses to environmental change3,4. One of the first 

efforts to define geographic regions of terrestrial biota were Alfred Russel Wallace’s so-called 

‘Zoological Regions’5, which included six major regions (hereafter realms) that are still 

recognised today6. The drivers responsible for these geographic classifications are predominantly 

environmental conditions or physical barriers. Biogeographic studies have shown that deep 

divergence in the geographic arrangement of terrestrial biota arose as a result of plate tectonics, 

while shallow divergence has been most frequently attributed to climatic conditions7. In aquatic 

ecosystems, the relative importance of biogeographic drivers is less understood, although both 

climatic (e.g. temperature)8 and tectonic forces9 have been identified as key determinants of 

marine biogeographic patterns. Recent studies have partitioned the oceans into distinct 

ecoregions (i.e. a geographically defined area, smaller than a realm, that contains characteristic 

species assemblages)1,10, but the description of marine ecoregions has mostly considered 

conspicuous or well-described species. Similarly, most marine biogeographic research has 

focussed on readily identifiable eukaryotic species, principally metazoans11, although 

considerable progress has been made in understanding global patterns of marine microbes12. In 

line with recent studies demonstrating strong cross-phyla interdependence13, there is an 

increasing need to include prokaryotic species in our assessment of biogeographic patterns. The 

language of macroecology and microbial ecology is similar, both examining the incidence of 

species across different spatial scales, but these fields have long progressed independently. As a 

result, relatively few studies have explored biogeographic patterns simultaneously for both 

microscopic and macroscopic life, with examples of consistent and inconsistent patterns across 

different taxa13-15. Work is thus needed to explore the consistency of biogeographic breaks across 

different kingdoms of life. 

 

Human driven habitat destruction, pollution and the introduction of non-native species are key 

drivers of recent global biodiversity change3 and therefore have the potential to alter geographic 
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patterns of biota across multiple spatial scales. Cumulatively, anthropogenic stressors not only 

threaten vulnerable native species but also whole-community structure and function3,16,17. The 

magnitude and direction of human impacts are complex, with evidence for both gains and losses 

in local species richness across biomes18-20. However, a consistent global pattern is emerging, 

with a recent and rapid increase in species turnover19 and an associated increase in community 

similarity (b diversity) between two or more geographically separated sites20. Incidences of 

increased community similarity are known as biotic homogenisation21 and are driven by human 

activities that promote extinctions of native species and introductions of non-native species. In 

light of growing evidence that taxonomic, phylogenetic and functional diversity are strongly 

correlated22, the homogenisation of biological communities has the potential to negatively affect 

ecosystem function. It is widely accepted that even uncommon species within an ecological 

community can contribute significantly to ecosystem function23, demonstrating the importance of 

studying inconspicuous species to preserve ecosystem health. Studies have shown evidence for 

biotic homogenisation around the globe, with examples from plants18, vertebrates24 and 

invertebrates25 demonstrating alteration of terrestrial biogeographic patterns. However, many 

studies are of limited taxonomic scope, focussing on highly conspicuous species for which 

reliable data can be easily produced24,25. Thus, most work overlooks inconspicuous species (e.g. 

microbes and microscopic eukaryotes), which show vastly different reproductive, demographic 

and dispersal patterns compared to metazoans13, but are known to be key actors shaping the 

assembly of ecological communities and ultimately underpin ecosystem functioning26. Taken 

together, a more comprehensive characterisation of ecological communities is clearly needed 

when testing the role of anthropogenic activities on biogeographic patterns. 

 

The advent of high-throughput sequencing has revolutionised our understanding of microbial 

life, with studies examining global patterns of prokaryotic life now increasingly common12. 

Moreover, the recent and rapid development of methods to infer the incidence of larger 

organisms using genetic material isolated from environmental samples (known as environmental 

DNA or eDNA) has provided an unparalleled ability to identify species across the entire tree of 

life14,15,27. Together, these methods can rapidly generate standardised biodiversity data for entire 

communities at unprecedented resolution, thereby minimising regional and taxonomic biases. In 

addition, these datasets can be analysed without complete taxonomic assignment and DNA 
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samples can be repurposed to test novel hypotheses. A common technique is to amplify DNA 

barcodes from eDNA and use high-throughput sequencing to produce high-resolution 

biodiversity data. This method (eDNA metabarcoding) has been shown to reliably detect 

organisms across many different ecosystems27, but has infrequently been applied to understand 

spatial patterns of biodiversity across different kingdoms of life12,15. 

 

A unique geographic setting for testing biogeographic hypotheses is the South African coastline, 

where two large water masses (the Atlantic and Indian Oceans) meet, and a wide variety of 

abiotic and biotic conditions are found in a single region. This coastline has three well-defined 

coastal ecoregions bounded by the cold western boundary Benguela Current and the warm 

oligotrophic eastern boundary Agulhas Current. These ecoregions have been established on the 

basis of studies over several decades involving a number of conspicuous metazoan taxa2,28. 

Additionally, there is evidence for human exploitation of marine resources in the region spanning 

thousands of years29,30 and some areas of the coastline have been subject to heavy maritime 

activity for centuries31. Other human activities also prevail such as the establishment of 

aquaculture facilities or the construction of harbours and breakwaters29,30. Thus, the South 

African coastline is an ideal study system to explore the mechanisms shaping biogeographic 

patterns. 

 

Here we compared the biogeography of multiple marine kingdoms of life along the diverse 

coastline of South Africa. We first investigated the consistency of biogeographic boundaries 

across metazoans, protists and bacteria using eDNA metabarcoding. We then tested to what 

extent these patterns could be explained by anthropogenic and natural environmental factors. We 

finally evaluated if there was evidence for homogenisation of ecological communities along a 

coastline that has been affected by human activities for centuries. 
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Results 
 

DNA sequencing 

A total of 66.25 million sequences were produced across the three sequencing runs targeting 

sections of the standard DNA barcoding region of cytochrome c oxidase subunit I (hereafter 

COI), the V4 region of the eukaryotic nuclear small subunit ribosomal DNA (hereafter 18S) and 

the V3-V4 hypervariable region of prokaryotic small subunit ribosomal DNA (hereafter 16S). 

The number of unfiltered raw reads per experimental sample ranged from 61,958 to 859,580, 

with an average per sample across all three markers of 347,536 ± 109,665 (s.d.) (see 

Supplementary Table 1 for further details). Negative control samples exhibited very low levels of 

cross-contamination (Supplementary Note 1).   

 

Taxonomic assignments & alpha diversity  

After performing taxonomic assignment of sequences to metazoans, protists and bacteria, 

taxonomically grouped datasets with largest number of observations within each marker were 

used in subsequent analyses (COI for metazoans, 18S for protists & 16S for bacteria). Analyses 

for the remaining subsets are shown in Supplementary Note 2 and were consistent with the 

results presented hereafter. After taxonomic assignment to phyla 1,054, 1,433 and 2,826 ASVs 

(amplicon sequence variants) were retained for metazoans, protist and bacteria datasets 

respectively. Across all taxonomically grouped datasets the majority of detected ASVs came 

from a small number (<5) of phyla or supergroups (Figure 1b). This pattern was consistent across 

sampling sites and no major changes in the identity of ASVs at phyla or supergroup level across 

the study region were observed (Figure 1b). Similar patterns were observed in the proportions 

of taxonomically assigned reads (Extended Data Fig. 1). 
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Figure 1. a Map of South Africa indicating the sampling sites and the site types (red crosses are artificial sites and 
blue circles natural sites), the east, south and west coastal regions are denoted by orange, green and blue 
respectively. Site codes as in Supplementary Table 9. Landmasses were plotted using the map function from the 
maps package in R (v3.6.1)58; b Proportion of ASVs per phyla across each site for i metazoans, ii protists and iii 
bacteria. Each bar represents a site indicated by the site code as in Supplementary Table 9; c Amplicon sequence 
variant (ASV) richness per site separated by coast (point colour matches section a) and taxonomic group, black line 
indicates mean ASV richness.  
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Across all markers the greatest mean ASV richness was found along the southern coast (Fig. 1). 

However, a one-way analysis of variance (ANOVA) showed a significant difference (F2,15=7.18, 

p=0.007) between coastlines only in the bacterial dataset with no difference found in both the 

metazoan (F2,15=1.941, p=0.178) and the protist datasets (F2,15=1.416, p=0.273). A post-hoc 

Tukey test of the bacterial data (Supplementary Table 2) showed that the east and west coasts 

had significantly fewer ASVs compared to the south coast, but that they were not significantly 

different to one another in overall ASV richness.  

 
Beta diversity  

Across all three taxonomic groups, non-metric multidimensional ordinations showed clustering 

of sites consistent with coastal ecoregions previously described in conspicuous metazoan species 

(Fig. 2). Furthermore, permutational multivariate analysis of variance (PERMANOVA) models 

showed a significant (p<0.001) effect of coastline in all cases (see Supplementary Table 3 for 

model output), with pairwise significant differences (p<0.01) between all pairs of coastlines in 

all taxa (Supplementary Table 4), and data subsets (Extended Data Fig. 2). There was evidence 

for heterogeneity of multivariate dispersion in the bacterial dataset (ANOVA on betadispr 

F2,15=4.09, p=0.038, Supplementary Table 5). A Tukey test revealed a significant (p=0.031) 

pairwise difference between the east and west coast only, in line with the observations of Fig. 2., 

indicating that for bacteria, sites on the west coast were more variable in community composition 

than the more homogenous communities found at sites on the east coast. When the datasets were 

split by phyla, they demonstrated significant differences between ecoregions across all tested 

phyla (p<0.05 in all cases, see Supplementary Note 2 for full model output and visualisation). A 

power analysis (Supplementary Note 3) indicated that the number of ASVs allocated to each 

phylum was sufficient to detect a significant difference given the study design. 
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Figure 2. Observed patterns of β-diversity from environmental DNA metabarcoding of: a metazoans, b protists and 
c bacteria; based on Jaccard dissimilarities between amplicon sequence variants along the coast of South Africa. The 
first column of plots shows non-metric multidimensional scaling (nMDS) ordinations. Coloured hulls show the 
spread of the data and lines indicate the spread around the centroid grouped by coast with the east, south and west 
coasts denoted by orange, green and blue respectively. Site name abbreviations as in Supplementary Table 9, natural 
sites are denoted with triangles and artificial sites with filled circles. The second column of plots shows the same 
nMDS ordinations as the first column including the output of a generalised additive model with a 2D smoothed 
function for each of the significant environmental / impact variables overlaid; temperature – mean sea surface 
temperature (°C); Chlorophyll a – chlorophyll a concentration (mg m-3); impact – human marine impact score 
(unitless measurement, see details in text) against the two nMDS axes. The Venn diagrams indicate the percentage 
total of the variance in the community dissimilarity explained by each significant variable, derived using variance 
partitioning of a distance-based redundancy analysis.   
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Corrected Mantel tests indicated that in the metazoan and bacterial datasets, sea surface 

temperature (SST) and human impact (measured by an index covering multiple anthropogenic 

stressors) were significantly correlated with the observed ASV dissimilarities after geographic 

distance between sites was accounted for (SST p<0.05 in all cases; human impact p<0.01 in all 

cases; full model outputs shown in Supplementary Table 6). In the protist dataset chlorophyll a 

concentration and the human impact index remained significant (p<0.05 in both cases). In 

contrast, across all datasets sea surface salinity (SSS) showed no correlation (p>0.05 in all cases) 

with observed ASV dissimilarities. These results indicated that both geographic and 

environmental distance have some effect on the observed community structure and also 

confirmed the appropriate variables to retain for analysis in each dataset. In all cases, partial 

Mantel tests gave similar R statistics and p values (see Supplementary Table 6).    

 

A distanced-based redundancy analysis (dbRDA) showed a significant effect of both 

environmental variables (p<0.001 for SST and chlorophyll a in all cases) and human impact 

(p<0.05 in all cases) on the site similarity in metazoans, protists and bacteria (full model outputs 

are presented in Supplementary Table 7). Variance partitioning of the dbRDA models showed 

that human impact had a relatively smaller contribution to the observed dissimilarities compared 

to the chlorophyll a concentration or SST (as shown in Fig. 2). Across taxonomic groups there 

was negligible overlap in the variance explained by human impact and other variables. 

Generalised additive models with a 2D smoothed function showed significant terms (p<0.001, 

see individual full model outputs shown in Supplementary Table 8), indicating how each variable 

separately explained variation in the eDNA data in each of the taxonomic groups. SST and 

chlorophyll a concentration showed surfaces across nMDS plots for all markers (Fig. 2) that 

were simple, with gradients that were consistent across ecoregions. In contrast, human impact 

scores showed more complex surfaces with multiple peaks across ecoregions.  

 

Distance-decay 

Distance-decay slopes for all observations showed an exponential decrease in compositional 

similarity as the distance between sites increased (Fig. 3a). Regression models of log10 

transformed compositional similarity indicating that this slope was statistically significant in all 
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cases (p<0.001 for all taxonomic groups, full model output in Supplementary Note 4). 

Comparisons between artificial sites (e.g. recreational marinas, harbours) and natural sites (e.g. 

relatively unaltered rocky shore and natural harbours) in the metazoan dataset showed a 

significant difference in the slope between artificial and natural site comparisons (F3,76=47.73, p 

< 0.001). No statistically significant differences were found between site types in the protist or 

bacteria data, and the same pattern was observed within taxonomic groups for the metazoan and 

protist datasets across both the COI and 18S data (Supplementary Note 4). 

 

 
 
Figure 3. Plots showing distance between sites and community similarity measured using environmental DNA 
metabarcoding across South Africa. Logarithmically (base 10) transformed compositional similarity against distance 
is shown in a, which includes all datasets. Comparisons between artificial (coloured in red) and natural (coloured 
blue) sites are shown for b metazoans, c protists and d bacteria. 95% confidence intervals from the regression 
models are shown as light shaded areas around each regression slope.  
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Discussion 
 
Here, we showed that metazoans, protists and bacteria have similar biogeographic patterns along 

an extensive and heterogenous coastline. We found that these remarkably consistent patterns 

could be partially explained by measured environmental conditions (chlorophyll a and 

temperature), and to a lesser extent, cumulative human impacts. Additionally, we found evidence 

for anthropogenically driven homogenisation of communities, but this effect was restricted to 

metazoans. Collectively, we provide evidence of congruent biogeographic boundaries across 

vastly different forms of life, and demonstrate that underlying processes, such as anthropogenic 

alterations, affect biogeographic patterns differentially across taxa. 

 

Prokaryotes and eukaryotes diverged billions of years ago and have since evolved to inhabit a 

vast range of ecological niches. Previous studies have shown both similar32,33 and dissimilar34 

patterns of b diversity between macro- and microscopic species across environmental and 

geographic gradients. Recent work has explored biogeographic regionalisation in marine 

plankton across kingdoms15, showing that smaller planktonic organisms such as bacteria may 

have greater biogeographic structuring compared to larger metazoans or protists15. Together this 

evidence suggests that different ecological processes drive a number of taxon-specific responses 

to produce patterns that are not universal across ecosystems at different spatial scales13. Here we 

observed similar biogeographic patterns across life’s kingdoms (Fig. 2), providing clear evidence 

of cross-phyla biogeographical congruence. 

 

Our analyses suggest that environmental variables such as temperature or chlorophyll a 

concentration influenced the structure of marine communities across the study region (Fig. 2). 

Global studies of biogeographic patterns have shown a central role of temperature in the 

structuring of both microbial12 and larger planktonic life15,35 across the oceans. There is growing 

evidence that the range boundaries of marine organisms closely track their thermal limits4. 

Therefore, a general expectation was that species would remain within their thermal niche 

resulting in temperature-structured communities as observed here. In contrast to temperature, 

salinity had a minor role in structuring the studied communities (Fig. 2), an observation 

previously reported in a global marine analysis12, with exceptions found in microbial36 and 

meiofaunal37 life in regions with unusually strong salinity gradients (e.g. Baltic Sea). The SSS 
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range across our study system was very narrow (35.0 - 35.4ppt) and so the negligible observed 

effect was unsurprising. In the case of protists, biogeographic patterns showed a stronger 

association with primary productivity (measured here as chlorophyll a concentration). Previous 

research has shown little or no role of productivity in driving coastal and oceanic scale 

biodiversity patterns15,35. However, these studies explored the global role of various 

environmental variables; the significance of more localised oceanographic systems such as 

upwelling (as along the western coast of southern Africa) might not be as apparent in global 

analyses. 

 

Anthropogenic activities are known to alter both the physico-chemical properties of the marine 

environment and the trophic and ecological properties of ecosystems38. In our study system, 

human impact provided some explanatory power to understand the observed community 

structure, but to a much lesser extent compared to environmental variables (Fig. 2). The human 

impact index used here39 covered a large number of different types of impact (e.g. pollution, 

shipping intensity) but even this aggregated approach adequately explained a small proportion of 

the total variation in ASVs observed among sampling sites. Previous work on marine metazoans 

has shown a strong effect of proximate urbanisation40 and the ecological drivers produced 

through anthropogenic activities are well documented38. Interestingly, the pervasive and 

conspicuous urbanisation of the marine environment in the study area showed a much weaker 

effect on biogeographic patterns than other explanatory variables (Fig. 2). Anthropogenic 

pressures have become a major ecological driver only relatively recently in evolutionary time, 

with the most dramatic changes in biodiversity occurring within the 21st century3. It is clear that 

human activities are altering evolutionary trajectories38, either through extinction, range 

expansions or contractions. However, our data suggests that centuries of human impacts in our 

study system have not yet demonstrably altered the main observed biogeographic boundaries 

across taxa. 

 

Previous work on biotic homogenisation has shown a dramatic effect on whole communities at 

both regional18,41 and global scales24,25. Here, we found support for biotic homogenisation along 

the South African coastline only in metazoan species, with a difference in the slope of a distance-

decay relationship between artificial and natural sites. This pattern was consistent for metazoans 
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across the gene regions considered (Supplementary Note 4). Pervasive vessel activity in the 

region31, along with evidence that artificial environments are hotspots for biological invasions42, 

suggest that introduced metazoans are contributing to homogenisation of coastal communities. 

Further work should incorporate time series data to explore biotic homogenisation, given the 

significant but minor role of human impact in structuring ecological communities across the 

region.  

 

Both environmental parameters and species interactions have a clear-cut effect on marine 

community structure across kingdoms of life43, but the comparative role of deterministic 

(environmental filtering, niche processes, etc.) and stochastic processes (ecological drift, random 

dispersal, etc.) in explaining the observed patterns remains uncertain. The classical deterministic 

theory of microbial biogeography (Baas Becking hypothesis44, often summarised as ‘everything 

is everywhere but the environment selects’) postulates that due to vast population sizes and 

dispersal, microbes are found in all environments and the variation in abiotic conditions selects 

for those that make up the vast majority of species in each region. This theory ignores neutral 

processes which have been shown to have a critical role in structuring microbial biogeography 

across biomes45. In line with previous efforts studying deterministic and stochastic processes 

across taxonomic kingdoms46,47, we found that the majority of the observed variation could not 

be fully explained for both prokaryotic and eukaryotic species (Fig. 2). Indeed, recent 

biogeographic research in the oceans has provided both theoretical48 and empirical15 evidence of 

strong biogeographic patterns driven by both stochastic and deterministic forces, but much of the 

observed variation between communities remains unexplained. Understanding the comparative 

roles of different community structuring processes requires a more comprehensive examination 

of the observed variance between communities, species interactions, and the broader role of the 

environmental conditions where they live. 

  

Several recent innovations will provide valuable data to help uncover the unexplained variation 

in community structure. For example, the extraction and analysis of sedimentary ancient DNA 

allows the reconstruction of high-resolution biodiversity change over time49, providing evidence 

to evaluate the role of deterministic processes relative to temporal changes in environmental 

conditions. In addition, the analysis of co-occurrence networks from molecular data can provide 
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species interaction hypotheses (e.g. Djurhuus, et al. 14) that could be used to explore how 

ecological interactions structure biogeographic patterns. Finally, we expect that very high-

resolution multi-spectral remote sensing data (e.g. WorldView-3, <100m2) will provide 

unparalleled insights into the role of environmental forces structuring the distribution of 

ecological communities50.  
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Methods 
 

Field sampling 

We sampled a range of sites along 2,000 km of coastline (Fig. 1) between October and 

November of 2017 (see details in Supplementary Table 9), covering the three major marine 

coastal ecoregions of South Africa. In order to assess the effects of anthropogenic impacts, we 

compared human altered ‘artificial’ sites (e.g. recreational marinas, harbours) and ‘natural’ sites 

(relatively unaltered rocky shore and natural harbour sites) (see Supplementary Table 9). The 

artificial sites were previously surveyed for marine invertebrate biodiversity by Rius, et al. 51, 

and six adjacent natural sites were selected for this study. The natural sites were the nearest non-

developed sites with matching aspect and exposure (Fig. 1) to each of the artificial sampling 

sites. Three 400 ml seawater samples were filtered with 0.22 μm polyethersulfone membrane 

Sterivex filters (Merck Millipore, MA, USA) following the sampling scheme of Holman, et al. 42 

at each sampling site. Consequently, we sampled a total of 1,200 ml of seawater per site, a 

volume that has been shown to differentiate fine scale (<1 km2) community structure in marine 

systems40,42. Filters were immediately preserved at ambient temperature with the addition of 1.5 

ml of Longmire’s Solution for preservation until DNA extraction. Field control filters and 

equipment cleaning blanks were taken, transported, stored and sequenced as the rest of the field 

samples. 

 

Environmental DNA extraction 

We used a PCR-free laboratory separated from the main molecular biology laboratory facilities. 

No post-PCR or high concentration DNA samples were permitted in the laboratory. All surfaces 

and lab equipment were cleaned thoroughly before use with 1.25% sodium hypochlorite solution 

(3:1 dilution of household bleach). DNA extraction followed the SXCAPSULE method from Spens, 

et al. 52. Briefly, filters were first externally cleaned with sterile water and Longmire’s Solution 

was removed from the filter outlet using a sterile syringe, 720 μl Buffer ATL (Qiagen, Hilden, 

Germany) and 80 μl Proteinase K (20mg/ml) was added and filters were incubated overnight at 

56°C. The lysate was then removed from the filter inlet and subjected to DNA extraction using 

the Qiagen DNeasy Blood and Tissue Kit under the manufacturers recommended protocol. DNA 

was eluted using 200 µl Qiagen Buffer AE and re-eluted once to increase DNA yield. All DNA 
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samples were checked for PCR inhibition using the Primer Design Internal Positive Control 

qPCR Kit (Primer Design, Southampton, UK) with 10 μl reactions under the manufacturer 

recommended protocol. Inhibition was detected by an increase of >1.0 Ct in reactions containing 

eDNA compared to reactions with extraction controls. As inhibition was detected in a minority 

of samples, all samples were treated using the Zymo OneStep PCR Inhibition Removal Kit 

(Zymo Research, California, USA) following the manufacturer recommended protocol. Inhibited 

samples showed no evidence for inhibition post cleaning. 

 

High throughput eDNA amplicon sequencing  

Different sets of primers were used to generate three separate eDNA metabarcoding libraries for 

all samples. Two gene regions were selected to target broad metazoan/eukaryotic diversity: a 

313bp region of COI53 and a variable length region of 18S54. A 16S gene region of variable 

length was used to target the prokaryotes55. Illumina unique double-indexed metabarcoding 

amplicon libraries were constructed with a two-step PCR protocol as detailed in Holman, et al. 
42. The first PCR setup was performed in a PCR-free laboratory. The three eDNA samples per 

site were pooled and three independent technical replicates were sequenced per pool. The 

process per sequenced pool was as follows. The first PCR reaction was conducted in triplicate in 

a total reaction volume of 20 μl. Each reaction contained 10 μl Amplitaq GOLD 360 2X 

Mastermix (Applied Biosystems, California, USA), 0.8 μl (5 nmol ml−1) of each forward and 

reverse primers and 2 μl of undiluted environmental DNA template. The reaction conditions for 

PCR were an initial denaturation step at 95°C for 10 minutes followed by 20 cycles of 95°C for 

30 seconds, variable annealing temp (46°C for COI, 50°C for 18S and 55°C for 16S) for 30 

seconds, and extension at 72°C for 1 minute. A final extension at 72°C was performed for 10 

minutes. The triplicate first PCR replicates were then pooled and cleaned using AMPure XP 

beads (Beckman Coulter, California, USA) at 0.8 beads:sample volume ratio following 

manufacturer’s instructions. The second PCR reaction was conducted in a total volume of 20 μl 

containing 10 μl Amplitaq GOLD 360 2X Mastermix, 0.5 μl (10 nmol ml−1) of both forward and 

reverse primers and 5 μl of undiluted cleaned PCR product from the first reaction. PCR 

conditions were an initial denaturation step at 95°C for 10 minutes followed by 15 cycles of 

95°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 1 minute. A 

final extension at 72°C was performed for 10 minutes. PCR 2 products were cleaned using 
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AMPure XP beads as above. Negative control samples for the filters, extraction kit, PCR1 and 2 

were included in library building and sequenced alongside experimental samples. Products were 

quantified following the manufacturer’s instructions using the NEBNext Library Quant qPCR kit 

(New England Biolabs, Massachusetts, USA) and then normalised and pooled at an equimolar 

concentration for each marker. Each gene region was sequenced independently using a V3 

paired-end 300bp reagent kit on the Illumina MiSeq Instrument with 5% PhiX genomic library 

added to increase sequence diversity. 

 

Bioinformatics 

Raw sequences were de-multiplexed using the GenerateFastQ (v2.0.0.9) module on the MiSeq 

control software (v3.0.0.105). Cutadapt (v2.3)56 was used to filter sequences to include only 

those that contained both the forward and reverse primer sequence across both read pairs for 

each gene fragment, remaining sequences then had the primer region removed for each gene 

fragment using the default settings. Sequences were denoised using the DADA2 pipeline 

(v1.12)57 in R (v3.6.1)58 with the default parameters unless noted as follows. Sequences were 

filtered to retain only pairs of reads with an expected error of 1 or fewer per read. Read trimming 

was performed after manual examination of the read quality profile, the forward reads were 

trimmed to 250bp (COI), 240bp (18S) and 240 bp (16S) and the reverse reads were trimmed to 

230bp (COI), 220bp (18S) and 220 bp (16S). As each marker was sequenced separately, the 

differences in read trimming length reflect typical variation in sequencing runs rather than any 

biological difference. The error rates per run were estimated and used to perform the denoising 

using the DADA2 algorithm. The denoised sequence pairs were then merged and resulting 

sequences were truncated if they were outside of the expected gene fragment range (303-323bp 

for COI, 400-450bp for 18S and 390-450bp for 16S). Chimeras were identified and removed 

before assembling a sample by ASV table for analysis. The denoised ASVs were then curated 

using the default settings of the LULU algorithm59 which merges sequences based on sequence 

similarity and co-occurrence. Assigning taxonomy to a set of unknown sequences is a difficult 

task, particularly considering many marine species lack DNA barcodes, are undescribed, or have 

erroneous barcodes in online public databases. We therefore focused our analysis at a higher 

taxonomic level than species, assigning taxonomy to sequences from the COI and 18S data as 

follows. The RDP classifier (v2.13)60 was used to assign taxonomy for COI using a previously 
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published COI database61 (v4.0) and a modified version of the SILVA database62 (v3.2 from 

https://github.com/terrimporter/18SClassifier). As species level assignments have been shown to 

be accurate for COI data42 an unconstrained (no limits on sequence similarity or match length) 

BLAST search (v2.6.0+) was performed for each sequence against the entire National Centre for 

Biotechnology Information nt database (downloaded on 16th May 2019), 200 hits per sequence 

were retained (-num_alignments). These sequences were then parsed using an R script to exclude 

hits below 65% coverage, remaining assignments with percent identity above 97% for COI were 

used to collapse reads for ASVs assigned to the same species. Recent analyses have suggested 

that only exact (100% identity) matching of sequences to reference data is appropriate for species 

assignment for the prokaryotic 16S region63. The 16S sequences were matched to the SILVA 

database (release 132)62 using the default settings of the assignTaxonomy function from the 

DADA2 package to assign taxonomy at genus level or above. The incidence of NUMTs (nuclear 

mitochondrial DNA) and chimeras in the final ASV list was evaluated following Supplementary 

Note 5. 

 

The following quality control filters were applied to the ASV by sample table produced by 

DADA2. First, the minimum number of reads per observation was set at three. Any ASVs not 

represented in at least one other sample were discarded. ASVs were then filtered to retain only 

those found in all three technical replicates. For any ASV found in the negative control samples, 

the largest value among the read count across all negative control samples was used as the zero 

value for all other samples (i.e. any smaller values found in non-control samples were set to 

zero). The COI and 18S datasets were then subset by the RDP classifier taxonomic assignments 

to produce datasets for the protists and metazoans as follows. Phylum level assignments above a 

threshold of 30, a value well above that shown to accurately assign phylum level taxonomy 61, 

were parsed to include phyla that contained only metazoan or protist members for each group 

respectively, other assignments or unknown assignments were discarded. This resulted in a 

protist and metazoan dataset for each marker, which were subsequently used for separate 

analyses using these groupings. The 16S data was parsed to include only bacterial ASVs. Within 

each taxonomic dataset samples were then rarefied to the smallest number of reads (see 

Supplementary Table 1). Technical replicates were then collapsed to produce a dataset 

containing the mean value of rarefied reads per ASV. Finally, ASVs assigned using BLAST 
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(with no cases of multiple matches of equal quality) to the same species in the COI dataset were 

combined by summing reads per site. The taxonomic assignment method used for the 16S data 

assigns to genus, and species level assignments are not possible for all taxa using the selected 

18S region, so no ASVs from these datasets were collapsed. In order to explore broad scale 

patterns of taxonomic diversity, the number of ASVs per phyla and number of rarefied reads per 

phyla were collapsed to produce per site assessments of taxonomic composition. As phylum 

level phylogeny is not resolved for all protist species, the protist dataset was grouped by 

supergroup designations according to Burki, et al. 64. For plots, phyla represented by less than 

2% of ASV counts were concatenated in an ‘other’ category. 

 

Environmental, human impact and geographic data 

In situ environmental data reflects a snapshot of the total conditions experienced across the 

lifetime of the species that make up marine communities. Therefore, abiotic variables for the 

sites covering an ecologically relevant timescale were sourced as follows. High resolution (1 

km2) remote sensing average daily sea surface temperature data derived from multiple satellite 

deployments, combined with in situ data65 was parsed in R to find the nearest datapoint to each 

site. For each point, a mean from two years of data from November 2017 was calculated. 

Interpolated average (2005-2017) sea surface salinity data (0.25° grid resolution) generated using 

gliders, oceanographic casts etc. from the 2018 World Ocean Atlas66 was parsed to include only 

surface data for the sites. Monthly global ocean colour data (4 km2) derived from multiple 

satellite deployments67 was parsed to calculate an average value for chlorophyll a density per site 

across two years from November 2017. Finally, a previously described39 1 km2 global resolution 

cumulative index for anthropogenic impact on marine ecosystems, comprising fishing pressure, 

climate change, shipping and land-based pollution, was parsed to produce a value for each site 

cumulatively across the entire period for which data were available (2003-2013). These global 

datasets have excellent temporal resolution, but are only appropriate for testing large-scale 

patterns as they have limited ability to discriminate highly localised observations.  

 

Ecological statistics 

Analyses were conducted in R (v3.6.1) unless otherwise stated. Differences in the mean number 

of ASVs per coastline were assessed using an ANOVA after testing for normally distributed 
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residuals using a Shapiro-Wilk test and equal variance between coasts using a Bartlett test. A 

Tukey’s Honest Significant difference test was used to evaluate significant ANOVA results. 

Differences in community similarity were assessed using a PERMANOVA68 implemented with 

the function adonis from the package vegan (v2.5-6)69 to assess differences in multivariate 

centroids and dispersion between coastlines. The PERMANOVA was conducted on a matrix of 

Jaccard dissimilarities as this ecological index has been shown to be appropriate for 

biogeographical studies70. Significant pairwise differences were assessed using the function 

adonis.pair from the EcolUtils package (v0.1)71. To analyse if groups of samples have a 

difference in intra-group community variation, also known as heterogeneity of multivariate 

dispersion, the PERMDISP2 procedure72 was used, implemented in the function betadisper from 

the vegan package. The pairwise group differences in heterogeneity of multivariate dispersion in 

the case of a global significant result from betadisper were analysed using a Tukey’s Honest 

Significant difference test. Non-metric multidimensional scaling ordinations (nMDS) were 

calculated using Jaccard dissimilarities and the function metaMDS from the vegan package. 

 

The influence of the abiotic and human impact data on the observed patterns of beta diversity 

were evaluated as follows. It has previously been common to use a partial Mantel test to evaluate 

the effect of a distance matrix (frequently environmental variables) on a second distance matrix 

(species composition) while ‘cancelling out’ the effect of a third matrix (geographic distance). 

However, this approach has been shown to be sensitive to spatial autocorrelation common in 

ecological datasets73. A recently developed method73, which corrects spurious inflations of the 

parameter estimate for Mantel tests, was implemented. Across each taxonomic group Mantel 

tests were conducted comparing Jaccard dissimilarity against Euclidean distance for each 

environmental variable. For each test Moran spectral randomisation was performed including the 

geographic distance data with 10,000 permutations to assess statistical significance using the msr 

function from the adespatial package (v0.3-8). Partial Mantel tests were conducted with 10,000 

permutations using the mantel.partial function from the vegan package for comparison.   

 

Explanatory variables which had some correlation with the community dissimilarity after 

adjusting for geographic distance were then evaluated as follows. First, a distance-based 

redundancy analysis (dbRDA)74, regressing site Jaccard dissimilarities against all remaining 
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variables, was performed using the function dbrda from the vegan package. The significance of 

terms was assessed with 10,000 permutations. The dbRDA ordination allows us to examine 

linear changes in the beta diversity in response to a number of predictor variables in tandem, and 

also to explore their relative impact. The function varpart from the vegan package was then used 

to partition the variance in the community dissimilarity by the environmental variables. We then 

used a generalised additive model to visualise the variation of each significant variable across the 

nMDS space via a restricted maximum likelihood 2D smoother, implemented in the function 

ordisurf from the vegan package. 

 

Distance-decay relationships were explored by first measuring compositional similarity (1- 

Jaccard index) for each pair of sites, and then calculating distances between pairs of sites by 

drawing a continuous transect 1 km offshore parallel to the high-water mark using Google Earth 

Pro (v7.3.2.5776), taking the distance along the transect to measure distance between sites. We 

then used these data in least-square regression models using the function lm with an interaction 

function between distance and site type (artificial or natural) terms against compositional 

similarity as a response term. The compositional similarity values were log10 transformed to 

linearise the response, untransformed values of zero (no overlap of species) were omitted to 

avoid infinite response variable values. 
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Extended Data Figure 1 Bar charts indicating the proportion of reads assigned per phyla (metazoans/bacteria) or 
supergroup (protists) from environmental DNA metabarcoding of seawater collected from sites across South 
Africa. The three rows correspond with data from metazoans (top), protists (middle) and bacteria (bottom). Site 
name abbreviations as in Supplementary Table 9. 
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Extended Data figure 2 Observed patterns of β-diversity from environmental DNA metabarcoding 
of: a metazoans from the 18S dataset and b protists from the COI dataset; based on Jaccard dissimilarities 
between amplicon sequence variants along the coast of South Africa. The first column of plots shows non-metric 
multidimensional scaling (nMDS) ordinations. Coloured hulls show the spread of the data and lines indicate the 
spread around the centroid grouped by coast with the east, south and west coasts denoted by orange, green and 
blue respectively. Site name abbreviations as in Supplementary Table 9. Natural sites are denoted with triangles 
and artificial sites with filled circles. The second column of plots shows the same nMDS ordinations as the first 
column including the output of a generalised additive model with a 2D smoothed function for each of the 
significant environmental / impact variables overlaid; temperature – mean sea surface temperature (°C); impact – 
human marine impact score (unitless measurement, see details in main text) against the two nMDS axes. The 
Venn diagram charts indicate the percentage total of variance in community dissimilarity explained by each 
significant variable, derived using variance partitioning of a distance-based redundancy analysis. 
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