117 research outputs found

    Suspicion of respiratory tract infection with multidrug-resistant Enterobacteriaceae: epidemiology and risk factors from a Paediatric Intensive Care Unit

    Get PDF
    Enterobacteriaceae distribution. Distribution of Enterobacteriaceae isolates (n = 167) in lower respiratory tract material, MDR (n = 51) vs susceptible (n = 116) organisms during the study period. (XLSX 14 kb

    Heteroleptic Ir(III) complexes based on 2-(2,4-difluorophenyl)-pyridine and bisthienylethene: structures, luminescence and photochromic properties

    Get PDF
    Two bisthienylethenes 2-(2-hydroxyphenyl)-4,5-bis[2,5-dimethyl(3-thienyl)]-1H-imidazole (L1H) and 2-(2-hydroxyphenyl)-4,5-bis(2,5-dimethyl(3-thienyl))-1-phenyl-imidazole (L2H), which have a chelating N,O-donor binding site attached to the photochromic core, have been synthesized using a one-pot condensation reaction, and used to prepare the heteroleptic complexes [Ir(dfppy)2(L1)]·2CH3OH (1) and [Ir(dfppy)2(L2)] (2) [dfppyH = 2-(2,4-difluorophenyl)-pyridine]. In the crystal structures of all four compounds, two thiophene groups of each bisthienylethene molecule adopt parallel conformation. Neighboring molecules in L1H and 1 are linked into supramolecular chains through hydrogen bonds. Particularly, the packing structure of 1 contains right- and left-handed 21 helical chains. In contrast, neighboring molecules in L2H and 2 interact only through van der Waals interactions. At room temperature, L1H and L2H in CH2Cl2 show fluorescence emission at 442 nm and 469 nm, respectively. Compounds 1 and 2 in CH2Cl2 reveal broad emission band characteristics of the Ir(III)/dfppy− chromophores at 508 nm and 494 nm, respectively, with a mixing of 3MLCT and 3LC characters. At room temperature, the photochromism ability of L2H in CH2Cl2 is clearly weaker than that of L1H. Moreover, no photochromism has been observed in 1 and 2. It has been demonstrated that both the substituent group and {Ir(dfppy)2}+ coordination could significantly influence the crystal structures, luminescence and photochromic properties of L1H, L2H, 1 and 2

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locu

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus

    Medical treatment of pulmonary hypertension in adults with congenital heart disease : updated and extended results from the International COMPERA-CHD Registry

    Get PDF
    Funding Information: The authors are indebted to the COMPERA investigators and their staff. We explicitly thank Dr. Claudia S. Copeland for the professional editing of the final draft of the manuscript. Funding: COMPERA is funded by unrestricted grants from Acceleron, Actelion Pharmaceuticals (Janssen), Bayer, OMT and GSK. These companies were not involved in data analysis or the writing of this manuscript. Funding Information: ICMJE uniform disclosure form (available at https:// dx.doi.org/10.21037/cdt-21-351). The series “Current Management Aspects in Adult Congenital Heart Disease (ACHD): Part IV” was commissioned by the editorial office without any funding or sponsorship. Dr. DH reports non-financial support from Actelion, Boehringer-Ingelheim, and Shire, outside the submitted work; Dr. DP reports personal fees from Actelion, Biogen, Aspen, Bayer, Boehringer Ingelheim, Daiichi Sankyo, and Sanofi, outside the submitted work; Dr. MD reports personal fees from Actelion, Bayer, GSK and MSD, outside the submitted work; Dr. HAG reports personal fees from Actelion, Bayer, Gilead, GSK, MSD, Pfizer and United Therapeutics, outside the submitted work; Dr. MG reports personal fees from Actelion, Bayer and GSK, outside the submitted work; Dr. MMH reports personal fees from Acceleron, Actelion, Bayer, MSD and Pfizer, outside the submitted work; Dr. CDV reports personal fees from Actelion, Bayer, GSK, MSD, Pfizer, and United Therapeutics, outside the submitted work; Dr. RE reports personal fees from Actelion, Boehringer Ingelheim, OMT, Bayer, and Berlin Chemie; grants from Actelion and Boehringer Ingelheim, outside the submitted work; Dr. MH reports grants and personal fees from Actelion, personal fees from Bayer, Berlin Chemie, Boehringer Ingelheim, GSK, Janssen, Novartis and MSD, outside the submitted work; Dr. MH reports personal fees from Acceleron, Actelion, AstraZeneca, Bayer, BERLIN CHEMIE, GSK, MSD, Novartis and OMT, outside the submitted work; Dr. HW reports personal fees from Action, Bayer, Biotest, Boehringer, GSK, Pfizer, and Roche, outside the submitted work; Dr. DS reports personal fees from Actelion, Bayer, and GSK, outside the submitted work; Dr. LS reports personal fees from Actelion, Bayer, and MSD, outside the submitted work; Dr. SU reports grants from Swiss National Science Foundation, Zurich Lung, Swiss Lung, and Orpha Swiss, grants and personal fees from Actelion SA/Johnson & Johnson, Switzerland, and MSD Switzerland, outside the submitted work; Dr. TJL reports personal fees from Actelion, Janssen-Cilag, BMS, MSD, and OMT GmbH, outside the submitted work; Dr. LB reports personal fees from Actelion, outside the submitted work; Dr. MC reports personal fees from Boehringer Ingelheim Pharma GmbH, Roche Pharma, and Boehringer Ingelheim, outside the submitted work; Dr. HW reports personal fees from Boehringer Ingelheim, and Roche, outside the submitted work. Dr. EG reports personal fees from Actelion, Janssen, Bayer, MSD, Bial, OrPha Swiss GmbH, OMT and Medscape, outside the submitted work; Dr. SR reports personal fees from Actelion, Bayer, GSK, Pfizer, Novartis, Gilead, MSD, and United Therapeutics, outside the submitted work. The authors have no other conflicts of interest to declare. Publisher Copyright: © Cardiovascular Diagnosis and Therapy. All rights reserved.Background: Pulmonary arterial hypertension (PAH) is common in congenital heart disease (CHD). Because clinical-trial data on PAH associated with CHD (PAH-CHD) remain limited, registry data on the long-term course are essential. This analysis aimed to update information from the COMPERA-CHD registry on management strategies based on real-world data. Methods: The prospective international pulmonary hypertension registry COMPERA has since 2007 enrolled more than 10,000 patients. COMPERA-CHD is a sub-registry for patients with PAH-CHD Results: A total of 769 patients with PAH-CHD from 62 specialized centers in 12 countries were included into COMPERA-CHD from January 2007 through September 2020. At the last follow-up in 09/2020, patients [mean age 45.3±16.8 years; 512 (66%) female] had either post-tricuspid shunts (n=359; 46.7%), pre-tricuspid shunts (n=249; 32.4%), complex CHD (n=132; 17.2%), congenital left heart or aortic valve or aortic disease (n=9; 1.3%), or miscellaneous CHD (n=20; 2.6%). The mean 6-minute walking distance was 369±121 m, and 28.2%, 56.0%, and 3.8% were in WHO functional class I/II, III or IV, respectively (12.0% unknown). Compared with the previously published COMPERA-CHD data, after 21 months of followup, the number of included PAH-CHD patients increased by 91 (13.4%). Within this group the number of Eisenmenger patients rose by 39 (16.3%), the number of “Non-Eisenmenger PAH” patients by 45 (26.9%). Currently, among the 674 patients from the PAH-CHD group with at least one follow-up, 450 (66.8%) received endothelin receptor antagonists (ERA), 416 (61.7%) PDE-5 inhibitors, 85 (12.6%) prostacyclin analogues, and 36 (5.3%) the sGC stimulator riociguat. While at first inclusion in the COMPERA-CHD registry, treatment was predominantly monotherapy (69.3%), this has shifted to favoring combination therapy in the current group (53%). For the first time, the nature, frequency, and treatment of significant comorbidities requiring supportive care and medication are described. Conclusions: Analyzing “real life data” from the international COMPERA-CHD registry, we present a comprehensive overview about current management modalities and treatment concepts in PAH-CHD. There was an trend towards more aggressive treatment strategies and combination therapies. In the future, particular attention must be directed to the “Non-Eisenmenger PAH” group and to patients with complex CHD, including Fontan patients.publishersversionPeer reviewe

    Pulmonary Hypertension in Adults with Congenital Heart Disease: Real-World Data from the International COMPERA-CHD Registry

    Get PDF
    Introduction: Pulmonary hypertension (PH) is a common complication in patients with congenital heart disease (CHD), aggravating the natural, post-operative, or post-interventional course of the underlying anomaly. The various CHDs differ substantially in characteristics, functionality, and clinical outcomes among each other and compared with other diseases with pulmonary hypertension. Objective: To describe current management strategies and outcomes for adults with PH in relation to different types of CHD based on real-world data. Methods and results: COMPERA (Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension) is a prospective, international PH registry comprising, at the time of data analysis, >8200 patients with various forms of PH. Here, we analyzed a subgroup of 680 patients with PH due to CHD, who were included between 2007 and 2018 in 49 specialized centers for PH and/or CHD located in 11 European countries. At enrollment, the patients’ median age was 44 years (67% female), and patients had either pre-tricuspid shunts, post-tricuspid shunts, complex CHD, congenital left heart or aortic disease, or miscellaneous other types of CHD. Upon inclusion, targeted therapies for pulmonary arterial hypertension (PAH) included endothelin receptor antagonists, PDE-5 inhibitors, prostacyclin analogues, and soluble guanylate cyclase stimulators. Eighty patients with Eisenmenger syndrome were treatment-naïve. While at inclusion the primary PAH treatment for the cohort was monotherapy (70% of patients), with 30% of the patients on combination therapy, after a median observation time of 45.3 months, the number of patients on combination therapy had increased significantly, to 50%. The use of oral anticoagulants or antiplatelets was dependent on the underlying diagnosis or comorbidities. In the entire COMPERA-CHD cohort, after follow-up and receiving targeted PAH therapy (n = 511), 91 patients died over the course of a 5-year follow up. The 5-year Kaplan–Meier survival estimate for CHD associated PH was significantly better than that for idiopathic PAH (76% vs. 54%; p < 0.001). Within the CHD associated PH group, survival estimates differed particularly depending on the underlying diagnosis and treatment status. Conclusions: In COMPERA-CHD, the overall survival of patients with CHD associated PH was dependent on the underlying diagnosis and treatment status, but was significantly better as than that for idiopathic PAH. Nevertheless, overall survival of patients with PAH due to CHD was still markedly reduced compared with survival of patients with other types of CHD, despite an increasing number of patients on PAH-targeted combination therapy
    corecore