97 research outputs found

    Type III and IV deformation twins in minerals and metals

    Get PDF
    Type IV twins are defined and shown to exist in triclinic crystal systems, as well as in some monoclinic and trigonal systems. Here, we focus on Pericline twins in triclinic plagioclase as an example. Type IV twins are associated with the irrationality of one of the twinning elements that is rational for a type II twin. The formation of type IV twins is accomplished through the shear on a K2 plane produced by the motion of twinning disconnections on a K1 plane, followed by rotational partitioning. The same systems where type IV twins are present also have type III twins instead of type I. Without using the correct type IV analysis, one would deduce the wrong magnitude and direction of shear associated with the twinning process, the magnitude of which would increase with greater triclinicity. Types I and II twins form if and only if there are rational lattice translation vectors lying in the plane of distortion/shear. Otherwise, the twins are types III and IV. Historically, two types of twins (I and II) have been categorized for twinning in minerals and metals. When analyzed by the topological model, a crystallographic construction used to define the defect structure of interfaces, triclinic and some other lowsymmetry crystals do not fall into either category and instead form two new twinning types, namely, III and IV. Aside from accurately describing twin structures, these concepts are important for understanding the deformation of minerals such as plagioclase and for deriving constitutive models for the deformation

    Nucleation and growth of platelets in hydrogen-ion-implanted silicon

    No full text
    H ion implantation into crystalline Si is known to result in the precipitation of planar defects in the form of platelets. Hydrogen-platelet formation is critical to the process that allows controlled cleavage of Si along the plane of the platelets and subsequent transfer and integration of thinly sliced Si with other substrates. Here we show that H-platelet formation is controlled by the depth of the radiation-induced damage and then develop a model that considers the influence of stress to correctly predict platelet orientation and the depth at which platelet nucleation density is a maximum.This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences

    Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium

    Get PDF
    We present results from ab initio calculations of the mechanical properties of the rhombohedral phase (beta) of vanadium metal reported in recent experiments, and other predicted high-pressure phases (gamma and bcc), focusing on properties relevant to dynamic experiments. We find that the volume change associated with these transitions is small: no more than 0.15% (for beta - gamma). Calculations of the single crystal and polycrystal elastic moduli (stress-strain coefficients) reveal a remarkably small discontinuity in the shear modulus and other elastic properties across the phase transitions even at zero temperature where the transitions are first order.Comment: 6 pages, 3 figure

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Finite Sized Atomistic Simulations of Screw Dislocations

    Full text link
    The interaction of screw dislocations with an applied stress is studied using atomistic simulations in conjunction with a continuum treatment of the role played by the far field boundary condition. A finite cell of atoms is used to consider the response of dislocations to an applied stress and this introduces an additional force on the dislocation due to the presence of the boundary. Continuum mechanics is used to calculate the boundary force which is subsequently accounted for in the equilibrium condition for the dislocation. Using this formulation, the lattice resistance curve and the associated Peierls stress are calculated for screw dislocations in several close packed metals. As a concrete example of the boundary force method, we compute the bow out of a pinned screw dislocation; the line-tension of the dislocation is calculated from the results of the atomistic simulations using a variational principle that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure

    The social value of a QALY : raising the bar or barring the raise?

    Get PDF
    Background: Since the inception of the National Institute for Health and Clinical Excellence (NICE) in England, there have been questions about the empirical basis for the cost-per-QALY threshold used by NICE and whether QALYs gained by different beneficiaries of health care should be weighted equally. The Social Value of a QALY (SVQ) project, reported in this paper, was commissioned to address these two questions. The results of SVQ were released during a time of considerable debate about the NICE threshold, and authors with differing perspectives have drawn on the SVQ results to support their cases. As these discussions continue, and given the selective use of results by those involved, it is important, therefore, not only to present a summary overview of SVQ, but also for those who conducted the research to contribute to the debate as to its implications for NICE. Discussion: The issue of the threshold was addressed in two ways: first, by combining, via a set of models, the current UK Value of a Prevented Fatality (used in transport policy) with data on fatality age, life expectancy and age-related quality of life; and, second, via a survey designed to test the feasibility of combining respondents’ answers to willingness to pay and health state utility questions to arrive at values of a QALY. Modelling resulted in values of £10,000-£70,000 per QALY. Via survey research, most methods of aggregating the data resulted in values of a QALY of £18,000-£40,000, although others resulted in implausibly high values. An additional survey, addressing the issue of weighting QALYs, used two methods, one indicating that QALYs should not be weighted and the other that greater weight could be given to QALYs gained by some groups. Summary: Although we conducted only a feasibility study and a modelling exercise, neither present compelling evidence for moving the NICE threshold up or down. Some preliminary evidence would indicate it could be moved up for some types of QALY and down for others. While many members of the public appear to be open to the possibility of using somewhat different QALY weights for different groups of beneficiaries, we do not yet have any secure evidence base for introducing such a system

    Can differences in medical drug compliance between European countries be explained by social factors: analyses based on data from the European Social Survey, round 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-compliance with medication is a major health problem. Cultural differences may explain different compliance patterns. The size of the compliance burden and the impact of socio-demographic and socio-economic status within and across countries in Europe have, however, never been analysed in one survey. The aim of this study was to analyse 1) medical drug compliance in different European countries with respect to socio-demographic and socio-economic factors, and to examine 2) whether cross-national differences could be explained by these factors.</p> <p>Methods</p> <p>A multi-country interview survey <it>European Social Survey, Round 2 </it>was conducted in 2004/05 comprising questions about compliance with last prescribed drug. Non-compliance was classified as primary and secondary, depending whether the drug was purchased or not. Statistical weighting allowed for adjustment for national differences in sample mechanisms. A multiple imputation strategy was used to compensate for missing values. The analytical approach included multivariate and multilevel analyses.</p> <p>Results</p> <p>The survey comprised 45,678 participants. Response rate was 62.5% (range 43.6–79.1%). Reported compliance was generally high (82%) but the pattern of non-compliance showed large variation between countries. Some 3.2% did not purchase the most recently prescribed medicine, and 13.6% did not take the medicine as prescribed. Multiple regression analyses showed that each variable had very different and in some cases opposite impact on compliance within countries. The multilevel analysis showed that the variation between countries did not change significantly when adjusted for increasing numbers of covariates.</p> <p>Conclusion</p> <p>Reported compliance was generally high but showed wide variation between countries. Cross-national differences could, however, not be explained by the socio-demographic and socio-economic variables measured.</p

    Beeldcultuur, een drieluik.I: Deconstructie van het fenomeen culturele studies

    Get PDF
    An important process in glass manufacture is the forming of the product. The forming process takes place at high rate, involves extreme temperatures and is characterised by large deformations. The process can be modelled as a coupled thermodynamical/mechanical problem including the interaction between glass, air and equipment. In this paper a general mathematical model for glass forming is derived, which is specified for different forming processes, in particular pressing and blowing. The model should be able to correctly represent the flow of the glass and the energy exchange during the process. Various modelling aspects are discussed for each process, while several key issues, such as the motion of the plunger and the evolution of the glass-air interfaces, are examined thoroughly. Finally, some examples of process simulations for existing simulation tools are provided

    Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B07103, doi:10.1029/2010JB007931.Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge
    corecore