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Appendix A.  Matrix description of the twin in the TM 

For a type I twin or a precursor to type II, the following conditions are true: 

(A) P is an even-fold axis, most often 2'. 

(B) The t vectors that define the twin must lie in the plane of distortion, so that their projections in the 

twin plane are parallel to b.  

A corollary is: 

(C) If (B) is satisfied, then the glide plane is a mirror plane, normal to P. 

These conditions ensure that a low index direction lies in the 𝐾2 plane as specified in the classical theory.  

These conditions are always met in cubic crystals, and for most twins in tetragonal, orthorhombic crystals, 

and hexagonal crystals. Most twins in triclinic crystals and some twins in monoclinic and trigonal systems 

do not satisfy these requirements.  The twins are then type III or provide a precursor to type IV.  All the 

twin examples in the topological theory (TT) [13, 29], the basis for the TM, are for high symmetry crystals 

where Q is also a 2’ axis. This implies that this is always true, but it is not for triclinic crystals, for example. 

Of course, the application of the TT to the triclinic case should give the same results as described here.   

For a type III twin or a precursor to Type IV, (B) and (C) are not fulfilled and the following condition 

applies to P.  

(D) P is an even-fold inversion axis, most often �̅�′. 

We now outline the general procedure and demonstrate the twin symmetry for low symmetry crystals, 

following [7, 8].  In the TT and TM, there must be coherent terrace plane, here the twin plane. With the 
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composition plane coherent (and the nearby twin plane in the DP), one selects a commensurate site in the 

DP as the origin.  The displacements in the twin are related to the matrix by 

u = D𝒕M                   (A1) 

where D is the distortion matrix 𝜵u. Then the translation vectors in the two lattices are related by  

𝒕T = 𝒕M + 𝒖 = (𝑰 + 𝑫)𝒕M                     (A2) 

In the TT, for a unit TD, 𝒖 =  𝒃 and  

𝒃= 𝒕𝐓−M𝒕M                              (A3) 

where M is a coordinate transformation matrix, re-expressing 𝒕M  in the twin frame. Here, as for Figure 2 

in the text, M can be an engineering shear or an interface rotation. Alternatively, as in [13], one can 

introduce a Burgers circuit into the DP to define b, and the reduced circuit is defined by the origin, 𝒕T and 

𝒕M.  Thus, in a common DP frame, 𝒃= 𝒕T−𝒕M, Eq. (1).  The twin plane remains coherent for the twin, so 

the same configuration is repeated for any three-site arrangement in the coherent plane.  Therefore, the 

normal to the twin plane must be either a 2’ or a �̅�’ axis.  Hence the low index directions 𝒕T and 𝒕M have 

2 or mirror local symmetry relative to the 𝒕0 vector of the same indices in a single crystal matrix as shown 

in Figure A1(a). The two t vectors and their origin o define a repeatable pair of planar triangles in the DP.  

The problem regarding symmetry for type III twins is that this plane is slanted relative to P, which is 

therefore irrational.  As in the text, the plane of distortion plane and the twinning angle 𝛼 are defined  by 

the projections of the translation vectors onto the plane of distortion. With the relevant three entities o’, 

𝒕Tp, and 𝒕Mp, the Burgers vector is given by  

𝒃= 𝒕Tp−𝒕Mp                              (A4) 

and b is the same as in Eq. (1).  In the coherent twin plane, all sites have this triangular configuration, see 

Figure A1(a).  If the t vectors do not lie in the plane of distortion, as in Figures 3(d-f) there is no possible 

2’ axis other than P, which is irrational, and no possible m’ plane.  

We now analyze type I planes in triclinic crystals.  Figure A1(b) is a view parallel to the triangles in 

the glide plane in the DP in a triclinic crystal.  This example, which differs from the classical type II case, 

is the only possible type II twin.  As shown, n is then irrational, being rotated by 𝛽 from the nearest low-

index, rational direction.  Q // b is not a 2’ axis because site B does not rotate to site A.  Similarly, n is not 

a 2’ axis, because sites A and B rotate to empty sites. Obviously, the same would be true if Q were 
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irrational. Since the configuration at B is repeated at A after rotation, P is a 2’ axis. Also, the double 

triangles at all lattice points in the glide planes have m’ symmetry. Thus, for type I twins in triclinic 

crystals, conditions (A) to (C) are satisfied, but there are no 2’ axes other than P.  

The analog for type III is shown in Figure A1(c).  P is now a �̅�’ axis. Site A rotates to B but the triangle 

is not the same as that at D, so it inverts back to C.  Similarly, the t vectors above the glide plane are not 

mirror images of those below so there is no m’ symmetry. Instead, the added symmetry is a glide-mirror 

plane, (m’, 𝒑′𝒏) [44]. The projected translation vectors 𝒕𝑝  and the displacement vectors b have 2’ and m’ 

symmetry but the DP has �̅�’ and (m’, 𝒑′𝒏) symmetry only. Most rigid displacements, p, are associated 

with local relaxation at the interface, usually unknown.  The offset in Figure A1(c) differs, but can be 

treated as a rigid shift 𝒑′𝒏 parallel to n.  All earlier work applying the TM dealt with high symmetry 

crystals and could imply that 2’ and m’ symmetry applied generally.  However, Figure A1 proves that 

such is not the case for triclinic and some other lower symmetry lattices. 

 

Figure A1.  (a). View of double triangle formed by o, ±𝒕M, and ±𝒕T. (b). View of the glide plane of a type 

II twin in a triclinic crystal, also with a projection along n. (c). analog for a type III twin. 
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Appendix B: Twin characteristics for various compositions of plagioclase. 

While the text treats the twinning of labradorite, we present data for various compositions of 

plagioclase. These indicate the regular trends in properties as a function of composition. The type-

distinguishing parameter is zero for a labradorite and increases to maxima for albite and anorthite.  The 

maximum value of 𝛿 is 33o and this corresponds to a difference in 𝛼 values of 1.39o. Hence, the changes 

associated with the present work are significant. Determination of crystallographic quantities of twinning 

elements can be found in Supplementary Materials. 

Table 1. Lattice parameters of plagioclase [32]. The lattice parameters vary continuously with 

composition; these are theoretical values for typical values in the middle of the composition range for the 

plagioclase series.  The exception is An52, featured here, with a composition determined by wave-length 

dispersive spectroscopy [11]. 

Component/Name 
Lattice parameters 

a0(𝑛𝑚) b0(𝑛𝑚) c0(𝑛𝑚) α0(°) β0(°) γ0(°) 

An0 Albite 0.814 1.278 0.716 94.190 116.610 87.680 

An16 Oligoclase 0.815 1.282 0.714 93.965 116.475 88.631 

An28 Oligoclase 0.817 1.285 0.712 93.630 116.400 89.460 

An38 Andesine 0.815 1.283 0.710 93.620 116.210 89.700 

An52 Labradorite 0.818 1.286 0.711 93.530 116.210 89.920 
An66 Labradorite 0.818 1.287 0.711 93.570 116.030 90.370 

An85 Bytownite 0.819 1.288 0.710 93.370 116.040 90.870 

An100 Anorthite 0.817 1.287 0.708 93.113 115.913 91.261 

 

Table 2. Properties of type I and II twins in plagioclase. 

Component K1 x1 K2 x2 n  (°) β(°) (°) h0(nm) 2|bg|(nm) 

An0 (010) [-0.015 0 0.123] (-1 0 1.587) [010] [1 0 0.630] 8.44 33.38 0 0.638 0.094 

An16 (010) [0.014 0 0.131] (-1 0 2.534) [010] [1 0 0.395] 7.98 20.08 0 0.639 0.089 

An28 (010) [0.037 0 0.133] (-1 0 5.859) [010] [1 0 0.171] 7.65 8.13 0 0.641 0.086 

An38 (010) [0.044 0 0.137] (-1 0 10.508) [010] [1 0 0.095] 7.80 4.42 0 0.640 0.087 

An52 (010) [0.050 0 0.137] (-1 0 38.333) [010] [1 0 0.026] 7.80 1.18 0 0.642 0.087 

An66 (010) [0.066 0 0.146] (1 0 8.374) [010] [1 0 -0.119] 8.34 5.09 0 0.642 0.094 

An85 (010) [0.080 0 0.147] (1 0 3.356) [010] [1 0 -0.298] 8.54 11.77 0 0.642 0.096 

An100 (010) [0.089 0 0.144] (1 0 2.138) [010] [1 0 -0.468] 8.53 17.21 0 0.642 0.096 

 

Table 3. Properties of type III/IV twins in plagioclase (special case with 𝛽 = 0).  

Component K1 x1 K2 x2 n (°) (°) (°) h0(nm) 2|bg|(nm) 

An0 (010) [0.048,0,0.123] (001) [-0.064,1,0] [1 0 0] 7.05 0 33.38 0.638 0.079 

An16 (010) [0.051,0,0.131] (001) [-0.038,1,0] [1 0 0] 7.50 0 20.08 0.639 0.084 

An28 (010) [0.052,0,0.133] (001) [-0.015,1,0] [1 0 0] 7.57 0 8.13 0.641 0.085 

An38 (010) [0.053,0,0.137] (001) [-0.008,1,0] [1 0 0] 7.78 0 4.42 0.640 0.087 

An52 (010) [0.053,0,0.137] (001) [-0.002,1,0] [1 0 0] 7.79 0 1.18 0.642 0.087 

An66 (010) [0.056,0,0.146] (001) [0.010,1,0] [1 0 0] 8.31 0 5.09 0.642 0.093 

An85 (010) [0.056,0,0.147] (001) [0.024,1,0] [1 0 0] 8.36 0 11.77 0.642 0.094 

An100 (010) [0.054,0,0.144] (001) [0.035,1,0] [1 0 0] 8.15 0 17.21 0.642 0.092 
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Appendix C: Crystallographic analysis 

1. Determination of crystallographic quantities of twinning elements. 

For a triclinic lattice, the unit cell is described by three base vectors a0, b0 and c0, and the angles α0, β0, 

and γ0 between b0 and c0, c0 and a0, a0 and b0, respectively. Since the three base vectors are non-orthogonal, 

all vector operations have to be transformed to Cartesian coordinates, and then back to crystal coordinates. 

1.1 Conversion between crystal direction and vectors in Cartesian coordinates 

In the Cartesian coordinate system, a0 is the magnitude of a0 in the positive x-axis direction, b0 is a 

positive y-axis component of the b0, and c0 is the positive z-axis component of the c0. With these 

conditions, the basis vectors ai of the Cartesian coordinate system are expressed by the following 

equations. 

𝐚𝟏 = (a0, 0,0) 

𝐚𝟐 = (b0cos(γ0) , b0sin(γ0) , 0)                                                                           (1) 

𝐚𝟑 = (cx, cy, cz) 

Where, 

cx = c0cos(β0) 

cy = c0
cos(α0)−cos(γ0) cos(β0)

sin(γ0)
                                                                                 (2) 

cz =
Ω

a0b0 sin(γ0)
 

Ω = a0b0c0√1 − cos2 (α0) − cos2 (β0) − cos2 (γ0) + 2cos (α0)cos (β0)cos (γ0) 

 

Ω is the volume of a unit cell. The indices in the crystal coordinate system [uvw] are converted to a vector 

in Cartesian coordinates by the following expression. A is the transformation matrix between crystal 

coordinate and Cartesian coordinates. 

[xyz] = [uvw] [

a1

a2

a3

] = [uvw]A                                                                 (3) 

A = [

a0 0 0
b0 cos(γ0) b0 sin(γ0) 0

c0 cos(β0)
c0 (cos(α0)−cos(β0) cos(γ0))

sin(γ0)

Ω

a0b0sin (γ0)

]                                  (4) 

 

1.2 Conversion between Miller indices and plane normal in Cartesian coordinates 
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Similarly, the indices of crystal planes (Miller indices) and normal vector of a plane are related by 

reciprocal lattice vectors b. The reciprocal lattice vectors are determined from the basis vectors in 

Cartesian coordinates in real space. 

𝐜1 =
𝐚2×𝐚3

𝐚1⋅(𝐚2×𝐚3)
  

𝐜2 =
𝐚3×𝐚1

𝐚2⋅(𝐚3×𝐚1)
                                                            (5) 

𝐜3 =
𝐚1×𝐚2

𝐚3⋅(𝐚1×𝐚2)
  

The normal vector [xyz] of a plane can be related to the index of this plane (hkl) by the following equation. 

Therefore, B is the transformation matrix between the Miller index of a plane and its normal. 

[xyz] = [hkl] [

𝐜1

𝐜2

𝐜3

] = [hkl]B                                                                              (6) 

B =

[
 
 
 
 

1

a0
−

cos(γ0)

a0 sin(γ0)
−

b0c0(cos(β0)−cos(α0) cos(γ0))

 sin(γ0) Ω

0
1

b0 sin(γ0)
−

a0c0(cos(α0)−cos(β0) cos(γ0))

 sin(γ0) Ω

0 0
a0b0sin(γ0)

 Ω ]
 
 
 
 

                                       (7) 

 

1.3 Rotation matrix associated with twinning 

The orientation relationship between twin and matrix is related by the rotation around a specific axis. 

The rotation matrix R for a rotation around axis u = (ux, uy, uz) by an angle θ is: 

R(u, θ) =  [

cos θ + ux
2(1 − cos θ) uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uyux(1 − cos θ) + uz sin θ cos θ + uy
2(1 − cos θ) uyuz(1 − cos θ) − ux sin θ

uzux(1 − cos θ) − uy sin θ uzuy(1 − cos θ) + ux sin θ cos θ + uz
2(1 − cos θ)

]   (8) 

By applying the matrix on the vector [xyz], one can obtain the rotated vector [xryrzr]. 

[xryrzr] = [xyz]R(u, θ)                                                               (9) 

This rotation matrix can be applied to the basis vectors, so that a crystal direction in the twin can be 

transformed into one in the matrix. For example, a crystal direction [uvw]T in the twin can be converted 

to a crystal direction in the matrix, [uvw]M. 

[uvw]M = [uvw]T(ART)(ARM)−1                                            (10) 

RT and RM are the rotation matrices imposed on the twin and the matrix, respectively. In this equation, the 

crystal direction [uvw]T was converted to a vector in Cartesian coordinates by (ART) and transformed to 
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crystal direction in matrix by (ARM)-1. In a similar way, the cross product can be calculated in Cartesian 

coordinates and converted to fractional coordinates. 

1.4 Calculation of angles 

a) The angle θ between two vectors [u1v1w1] and [u2v2w2] is 

θ = arccos ((u1 u2  a0
2 + v1 v2 b0

2 + w1 w2  c0
2 + cos(γ0) (u1 v2 + u2 v1) a0 b0 +

         cos(β0) (u1 w2 + u2 w1) a0 c0 + cos(α0) (v1 w2 + v2 w1) b0 c0)/Iu1v1w1
Iu2v2w2

)                    (11) 

Iuvw = √a0
2 u2 + b0

2 v2 + c0
2 w2 + 2  cos(γ0) a0 b0 u v + 2 cos(β0) a0 c0 u w + 2 cos(α0) b0 c0 v w 

 

b) The angle θ between two crystal planes (h1k1l1) and (h2k2l2) is  

θ = arccos (d1 d2  (
S12 (h1 k2 + h2  k1) + S13 (h1 l2 + h2 l1)

+S23 (k1 l2 + k2 l1) + S11 h1 h2 + S22 k1 k2 + S33 l1 l2
) /Ω2)        (12) 

where  
1

d2 = (S11 h
2 + S22 k

2 + S33 l
2 + 2 S12  h k + 2 S13 h l + 2 S23 k l)/Ω

2. 

S11 = b0
2 c0

2 sin(α0)
2 

S22 = a0
2 c0

2 sin(β0)
2 

S33 = a0
2 b0

2 sin(γ0)
2 

S12 = a0b0c0
2(cos(α0) cos(β0) − cos(γ0)) 

S23 = a0
2b0c0(cos(α0) cos(β0) − cos(γ0)) 

S13 = a0b0
2c0(cos(α0) cos(β0) − cos(γ0)) 

The angle θ between two crystal directions [u1v1w1] and [u2v2w2] can be expressed by 

θ = arccos ((([u1v1w1]A) ⋅ ([u2v2w2]A))/(|[u1v1w1]A| ⋅ |[u2v2w2]A|))                   (13) 

c) For the angle between two planes or between a direction and a plane, the matrix B is substituted for 

matrix A.  

 

2.  Selection of step height and complementary Burgers vectors.  

In the text, we mention the selection of b and h.  An example with many choices is the Σ11 (001) twin 

in fcc crystals [1].  The favored choice theoretically was ℎ = 4ℎ0 because of its small Burgers vector and 

this agreed with experimental observation [2].  Another aspect is that there are symmetry related 

limitations on 𝛼.  For the Σ11 twin, the upper limit is 45°.  For large angles a different {100] variant with 

an angle reduced by 45° is selected.  For a given DP there is a dichotomy in the choice of  𝒃𝒈 when there 
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is 2D coincidence of a boundary as for coherent twin planes [3, 4] and some grain boundaries [5].  If the 

repeat distance parallel to 𝒃𝒈 is a, then the same twin can be created by an opposite sign complementary 

dislocation −𝒃𝑪𝒈 ,  where, for the same h 

 𝒃𝑔 + 𝒃𝐶𝑔 = 𝒂                                         (14) 

Thus, there is another limit. For the Σ11 case 𝒃𝑔 is the appropriate choice when 𝛼 <

22.5°,but for larger angles 𝒃𝐶𝑔 is appropriate. Hence the limit for 𝛼 𝑖𝑠 ± 22.5°.  

For type I twins or type II precursors with the same h, both vectors have the same rational origin for the 

related t vectors, and both have an associated but different twin angle  𝛼 or 𝛼𝐶, in accord with the 2’, m’ 

symmetry, so the choice between them is obvious.  An issue arises when there are different step heights. 

An example is Figure 2(b). For ℎ = 2ℎ0, the t vectors are symmetric, the origin is rational 𝒃𝑔 is small, 

and 𝒃𝐶𝑔  is large.  The choice of 𝒃𝑔 is obvious.  For ℎ = ℎ0, 𝒃𝑔 is large and 𝒃𝐶𝑔 is the appropriate TD 

vector. However, the symmetric origin for 𝒃𝐶𝑔 is irrational and would greatly complicate the TM analysis. 

Hence the unit TDs have Burgers vectors 𝒃𝐶𝑔 = (1 2) 2𝒃𝑔⁄ , ℎ = 2ℎ0 is selected for analysis.  
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