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We present results from ab-initio electronic-structure calculations of mechanical properties of
the rhombohedral phase of vanadium reported in recent experiments (R Ia), and other predicted
high-pressure phases (R Ib and bcc), focusing on properties relevant to dynamic experiments. We
find that of the three transitions the largest volume collapse (1.3%) is for the R Ia to R Ib transi-
tion. Calculations of the single crystal and polycrystal elastic constants reveal a remarkably small
discontinuity across the phase transitions even at zero temperature where the transitions are first
order.

PACS numbers: 62.50.+p, 61.50.Ks, 31.15.Ar

The existence of a high-pressure rhombohedral (R I)
phase of pure crystalline vanadium has been the focus
of an intense research effort recently. The first indi-
cation of a phase transition came from the theoretical
observation that the C44 shear modulus of bcc vana-
dium diminishes under pressure,1,2 becoming negative
at pressures of greater than ∼1.3 Mbar, pressures that
are experimentally accessible.1,2 A negative shear mod-
ulus means the material is mechanically unstable under
monoclinic (prismatic) shear, suggesting a phase transi-
tion. At that time the experimental evidence showed no
phase transition up to 1.54 Mbar.3 Then recently, Mao
and coworkers4 conducted x-ray diffraction experiments
in the diamond anvil cell (DAC) up to 1.5 Mbar and
found features in the diffraction peaks that were consis-
tent with a second-order phase transformation to a rhom-
bohedral structure with an R3̄m point group symmetry
at pressures above 0.69 Mbar. It was soon confirmed that
density functional theory (DFT) finds the rhombohedral
phase to be the ground state at zero temperature and
pressures above 0.8 Mbar, in reasonably good agreement
with experiment.5 In fact, it was shown that DFT pre-
dicts additional phase transformations that had not been
found in experiment, i.e. a first-order transformation to a
different rhombohedral structure at 1.2 Mbar and a third
transformation back to the bcc structure at 2.8 Mbar.5
These pressures have not been reached in the recent DAC
experiments.

Alternative techniques may provide the pressures
needed to observe the second rhombohedral phase and
the reentrant bcc phase. Dynamic experiments do not
rely on the mechanical integrity of anvils and are able
to reach multi-megabar pressures. They have been used
to study similar transformations such as the diffusion-
less alpha-epsilon transition in iron.6 There are several
challenges specific to vanadium, however. The soften-
ing of the shear modulus and the rhombohedral phase
transition are related to a subtle electronic effect,2 which
is likely to be weakened by increased temperature. Dy-
namic experiments that generate shocks cause substan-
tial temperature rises. Recent ramp wave techniques
based on Z,7 laser8,9 and graded-density impactor10

drives are able to generate high pressure without the en-
tropy generation of a shock, and are therefore preferable.
Another challenge is that the lattice distortion at the
phase transition is subtle (less than half a degree). It
was detected by x-ray diffraction in the DAC, but it is
probably too small for in-situ x-ray diffraction in dynamic
experiments.11 Indirect techniques are more promising to
detect the transition. For example, VISAR free-surface
velocity measurements can detect changes in the density
due to a volume collapse, and they can be used to in-
fer the longitudinal stress, and hence the strength if the
equation of state is known.9,12 Rayleigh-Taylor growth
rate is another way to probe strength.8

In this article we use DFT to make predictions about
the properties of high-pressure vanadium relevant to dy-
namic experiments. We compute the magnitude of the
volume change associated with the three phase transi-
tions related to the rhombohedral structure. We also
compute the elastic constants and calculate bounds on,
and an explicit estimate of, the polycrystalline shear
modulus. Since the strength is roughly proportional to
the shear modulus,13 any anomalies in the shear modu-
lus are likely to provide a signature in the VISAR trace.
Indeed, an important motivation for the present work is
to assess whether the bcc shear modulus C44 going to
zero is likely to produce a strong signature. The shear
modulus also affects defect energetics, and may have a
measurable effect on transition kinetics. We consider the
implications of our results for dynamic experiments to
detect the high-pressure phases.

The rhombohedral crystal structure of vanadium re-
sults from a slight distortion of the bcc structure. Con-
sider an atom in the bcc structure and three of its nearest
neighbors arrayed symmetrically about a three-fold crys-
tal axis (〈111〉 in the bcc crystal). The angle formed
between any two of these neighbors is α0 = arccos(-
1/3)=109.47◦. Now imagine the crystal strained uniaxi-
ally in the direction of this three-fold axis such that these
vectors are pushed symmetrically in (out) so that the
angles between the pairs decrease (increase) remaining
equal. The resulting crystal retains the three-fold sym-
metry axis. It is the rhombohedral structure (RI). It still
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FIG. 1: The volumetric strain ∆V/V of the ground state of
single-crystal vanadium at zero temperature with respect to
that of the bcc structure.

has a single atom per unit cell, so the bcc - RI transition
may be expected to be diffusionless (martensitic) and
likely rapid despite the small energy difference. There
are four independent three-fold axes 〈111〉, so there are
four variants of the rhombohedral crystal that are degen-
erate in energy (unless a shear stress is applied).

The ground state of the single-crystal rhombohedral
phase has been determined in DFT using this rhom-
bohedral shear path.5 The specific approach here as in
our previous calculations is to use DFT in combination
with a gradient-corrected exchange and correlation en-
ergy functional15 as implemented in the Vienna Ab-initio
Simulation Package (VASP) code along with the pro-
jector augmented-wave (PAW) method16 and standard
computational parameters.17 In Ref. 5, we calculated the
enthalpy and pressure as functions of strain along the
rhombohedral deformation path, and used the enthalpy
to find any stable or metastable crystal structures. We
noted that the equation of state in the bcc and rhom-
bohedral phases is almost identical, so their bulk moduli
are essentially equal (differing by no more than 3%). We
now use those data to determine the volume change as-
sociated with the corresponding phase transformations.
Suppose the pressure change in going from phase 1 to
phase 2 at constant volume is ∆P12 = P2 − P1 and the
bulk modulus of phase 2 is K. Then the volumetric strain
induced by changing the pressure in phase 2 to P1 is

∆V

V
= ∆P12/K. (1)

This relative volume change is plotted in Fig. 1.
In principle, there is a single volume change during the

transformation from bcc to the first rhombohedral phase
(R Ia), and a second volume change associated with the
transformation to the second rhombohedral phase (RIb),
and a third volume change associated with the transfor-
mation back to bcc at high pressure. In practice, the
kinetics of the transformation may cause the transforma-
tion to be overdriven so that the initial phase is retained

in a metastable state past the phase boundary until the
new phase has a chance to nucleate and grow. For this
reason it is interesting to examine the entire curve in
Fig. 1, and not just the values at the equilibrium phase
boundary.

In each case it is a volume collapse, so the volume is
reduced following the transition. The volume collapse
associated with the bcc to R Ia transformation is small,
0.3% or less in magnitude. It would not be easy to detect
such a small change in a dynamic experiment. The mag-
nitude of the volume collapse associated with the second
transformation is larger: about 1.5% for the R Ia to R Ib
transformation at 1.2 Mbar. The volume change would
be about the same if bcc were retained to a pressure of
∼1.2 Mbar and then transformed directly to R Ib. This
change is not as great as in the alpha-epsilon transition
in iron, but it may be large enough to detect. The final
transition back to bcc again has a change of over 1% in
magnitude. So the R Ia to R Ib transformation has the
strongest signature in terms of volume change, and it is
large enough that it may be detectable.

We next consider how the single crystal elastic con-
stants change with pressure. The elastic constants of the
bcc structure as a function of pressure have been calcu-
lated previously,2 but those of the rhombohedral struc-
ture have not. Specifically, we calculate Bijkl(P ), the
elastic constants with respect to the reference state at
pressure P and zero shear stress. They are equal to Cijkl

when the pressure vanishes; for P 6= 0, the relation is20

Bijkl = −P (δjlδik + δilδjk − δijδkl) + Cijkl . (2)

The details of the calculation of the elements Bijkl will
be given elsewhere.21 The six independent elastic con-
stants, B11, B33, B12, B13, B44, and B66 (here given
in the usual Voight notation in the rhombohedral frame
with the three-fold axis in direction 3), are discontinuous
at the first-order phase transitions; however, within each
domain of stable phases (bcc, R Ia, R Ib, and reentrant
bcc), most of the elastic constants increase monotoni-
cally. The exception is B33 in the R Ib phase (roughly
1.1 – 2.8 Mbar). Since B33 is associated with uniax-
ial deformation in the direction of the three-fold axis,
its anomalous behavior is suggestive, but a better pre-
sentation is needed to separate the effects of shear and
compression. We turn to it now.

Indeed, there is a remarkable approximate continuity
of the elastic properties across the phase transitions that
is not readily apparent from the elements of Bijkl. The
bulk modulus of the rhombohedral phases is within 3%
of that of the bcc structure, as we already discussed. The
eigenvalues of the 9×9 matrix B(ij)(kl) provide a descrip-
tion of the elasticity that is less coordinate dependent,
but there is a technical issue. In the rhombohedral phase,
shear and compression are mixed in the sense that a non-
equiaxed strain is required to produce purely hydrostatic
pressure, and the tetragonal strains to produce hydro-
static pressure and pure shear are not orthogonal. To
eliminate any ambiguity, we restrict to the space of con-
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FIG. 2: The elastic constants of the ground state single-
crystal structure–bcc, RIa, RIb, and reentrant bcc–as a func-
tion of pressure; (a) Bijkl written in the Voight notation in
the frame of the primitive rhombohedral cell, and (b) the cor-
responding eigenvalues of the 9 × 9 elastic constant matrix
Bijkl. In the rhombohedral phase there are six independent
elastic constants (vs. 3 for bcc),20 and four independent eigen-
values for vanadium metal (dashed curves represent 2 degen-
erate eigenvalues). Remarkably, both the ground-state bulk
modulus (the top curve) and the B′ (the second curve from
the top) are fairly smooth through the rhombohedral phase.

stant pressure strains using a projection matrix Π(ij)(kl).
Then the 9×9 matrix ΠBΠ has 5 nontrivial eigenvalues,
corresponding to different shear moduli.

The eigenvalues are plotted in Fig. 2(b). The top curve
represents two degenerate eigenvalues that are equal to
2B′ in the bcc phase, where B′ is the usual shear modulus
for tetragonal shear in the cubic crystal. The remaining
three eigenvalues are degenerate in the bcc phase and
equal to 2B44, where B44 is the shear modulus for pris-
matic shear in the cubic crystal (not to be confused with
the B44 in the rhombohedral frame). In the rhombohe-
dral phase two of these eigenvalues remain degenerate
but one splits off. That single eigenvalue represents a
pure shear corresponding to the rhombohedral deforma-
tion. Its value is decreasing to zero as the pressure in the
rhombohedral phase approaches the bcc phase boundary.
This decrease is most pronounced approaching the high-

pressure reentrant bcc phase (2.8 Mbar), but it is present
at both. In the energy curves, it is clear that the width
of the rhombohedral well is broadening with the change
in pressure as it rises above the bcc well and quickly be-
comes unstable. At the R Ia – R Ib boundary, it is the
other B44-like moduli, the paired modui, that are ap-
proaching zero, although interestingly the R Ia structure
remains metastable with an order parameter that goes
smoothly to zero at ∼2.7 Mbar.5

In polycrystalline vanadium the single-crystal elastic
constants are homogenenized into effective elastic con-
stants. In the case of a microstructure without texture,
the mechanical behavior is isotropic, and there are only
two independent elastic moduli: the bulk modulus K and
the shear modulus G. The bulk modulus is very close to
that of the bcc phase as mentioned earlier. The shear
modulus may be bounded using the Voight and Reuss
approximations of constant strain and constant stress,
respectively. In the Voight approximation the shear mod-
ulus is expressed in terms of the two rotational invariants
of the elastic constant tensor, I1 = Bijij and I2 = Biijj

where the repeated indices are summed. In the Reuss
approximation the shear modulus is expressed in terms
of the two rotational invariants of the elastic compliance
tensor, I ′1 = SB

ijij and I ′2 = SB
iijj . In particular, the re-

spective shear moduli are given by18

GV =
1
30

(3Bijij −Biijj) ; G−1
R =

1
15

(
6SB

ijij − 2SB
iijj

)
where the elastic compliance tensor SB

ijkl is defined as
usual19 except expressed in terms of the Bijkl elastic con-
stants rather than Cijkl. The expression for the shear
modulus in the Voight approximation in terms of the in-
dependent rhombohedral elastic constants is

GV =
1
30

(7B11 + 2B33 − 5B12 − 4B13 + 12B44) . (3)

The Reuss expression is too long to be presented here.21
In calculating the Voight and Reuss approximations (as
well as the explicit polycrystalline calculations below),
we assume that the deformations are infinitessimal. With
the low energy barriers, switching between variants of the
rhombohedral phase may contribute to the strain with
no cost in stored elastic energy, leading to a reduction
in the shear modulus. At larger strains the response
to rhombohedral strains stiffens anharmonically. Both
of these effects have been neglected. The homogenized
shear modulus in the rhombohedral phase is positive (see
Fig. 3), indicating mechanical stability. The variation in
the difference between the Voight and Reuss bounds is
indicative of the changing crystalline anisotropy.

In the case of a microstructure with more equiaxed
grains, the polycrystalline shear modulus is homogenized
from the single-crystal Bijkl of the ground state structure
at each pressure using a virtual test sample (VTS).22 The
finite element VTS is a cube of 1000 grains with random
texture, strained in six different modes to get the average
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FIG. 3: The polycrystalline shear modulus as a function of
pressure, along with the Voight and Reuss bounds for the case
of no texture. This shear modulus is based on the elastic con-
stants Bijkl of the ground state single-crystal structure–bcc,
RIa, RIb, and reentrant bcc (see Fig. 2 (a)). The inset shows
the cubic virtual test sample with 1000 grains (100 µm wide
in each direction) used in the polycrystalline shear modulus
prediction (color indicates grain orientation).

shear modulus plotted in Fig. 3. The overall prediction
lies between the Voight and Reuss bounds, but it gives a
better value for the shear modulus especially in the region
just prior to the R Ib-to-reentrant bcc transition, where
the Voight-Reuss difference is as large as 1.34 Mbar.
Also around this transition, the predicted polycrystalline
shear modulus significantly decreases, and may lead to
an anomalous dynamic response.

We have investigated some of the properties relevant
to dynamic experiments of two high-pressure rhombohe-
dral phases in vanadium metal. It will be challenging for
dynamic experiments to detect the rhombohedral phase
unambiguously. The distortion is probably too small for
in-situ x-ray diffraction. We have predicted that the vol-
ume change of the initial rhombohedral phase (0.3%) is
too small to have a clear effect, but the volume change
associated with the second transition, rhombohedral to
rhombohedral, is larger (1.5%) and may present a sig-
nature in the VISAR trace or in wave transit times. We
have also predicted values for the single crystal and poly-
crystalline elastic constants in the rhombohedral phases
at zero temperature. The first order transitions between
the bcc and rhombohedral phases give remarkably small
changes in the elastic constants.

The results here were obtained using DFT at zero tem-
perature for pure vanadium. Since the phase transition is
driven by a rather subtle electronic structure effect, the
elastic constants may be substantially affected by changes
in temperature or impurities.2,5 It would be interesting
to see whether the remarkable continuity of the moduli
persists as the phase boundaries and the relative stiffness
of the bcc and rhombohedral structures change.
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