127 research outputs found

    Prevalence and analysis of Pseudomonas aeruginosa in chinchillas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chinchillas (<it>Chinchilla laniger</it>) are popular as pets and are often used as laboratory animals for various studies. <it>Pseudomonas aeruginosa </it>is a major infectious agent that causes otitis media, pneumonia, septicaemia enteritis, and sudden death in chinchillas. This bacterium is also a leading cause of nosocomial infections in humans. To prevent propagation of <it>P. aeruginosa </it>infection among humans and animals, detailed characteristics of the isolates, including antibiotic susceptibility and genetic features, are needed. In this study, we surveyed <it>P. aeruginosa </it>distribution in chinchillas bred as pets or laboratory animals. We also characterized the isolates from these chinchillas by testing for antibiotic susceptibility and by gene analysis.</p> <p>Results</p> <p><it>P. aeruginosa </it>was isolated from 41.8% of the 67 chinchillas included in the study. Slide agglutination and pulsed-field gel electrophoresis discriminated 5 serotypes and 7 unique patterns, respectively. For the antibiotic susceptibility test, 40.9% of isolates were susceptible to gentamicin, 77.3% to ciprofloxacin, 77.3% to imipenem, and 72.7% to ceftazidime. DNA analyses confirmed that none of the isolates contained the gene encoding extended-spectrum ÎČ-lactamases; however, 2 of the total 23 isolates were found to have a gene similar to the <it>pilL </it>gene that has been identified in the pathogenicity island of a clinical isolate of <it>P. aeruginosa</it>.</p> <p>Conclusions</p> <p><it>P. aeruginosa </it>is widely spread in chinchillas, including strains with reduced susceptibility to the antibiotics and highly virulent strains. The periodic monitoring should be performed to help prevent the propagation of this pathogen and reduce the risk of infection from chinchillas to humans.</p

    A study on cross-reactivity of anti-DNA antibody with glycosaminoglycans.

    Get PDF
    To study the pathogenesis of lupus nephritis, the cross reactivity between anti-DNA antibody and glycosaminoglycans (GAGs) was investigated. Monoclonal anti-DNA antibodies were obtained from hybridomas by the fusion of MRL/lpr/lpr splenocytes with murine myeloma cells. Some of these monoclonal anti-DNA antibodies showed cross reactivity with GAGs, such as hyaluronic acid, chondroitin sulfate and heparan sulfate. To elucidate the mechanism of cross reactivity, inhibition assays with propanol and polyethylenimine (PEI), a cationic agent, were carried out. Increase of the concentration of PEI (0.6-2.0% vol/vol) resulted in a dose dependent decrease in the binding ability of anti-DNA antibody to GAGs. Propanol, an organic reagent which disrupts the van der Waals bonds between epitopes and paratopes, showed little inhibitory effect on the binding activity of monoclonal anti-DNA antibody to GAGs. These results indicate that the binding of anti-DNA antibody to GAGs is due to a charge interaction rather than van der Waals forces. Anti-DNA antibody which can react with GAGs in the glomerular basement membrane seems to play an important role in the pathogenesis of lupus nephritis.</p

    Clinical impact of primary tumour location, early tumour shrinkage, and depth of response in the treatment of metastatic colorectal cancer with first‑line chemotherapy plus cetuximab or bevacizumab

    Get PDF
    The primary tumour location is an important prognostic factor for previously untreated metastatic colorectal cancer (mCRC). However, the predictive efficacies of primary tumour location, early tumour shrinkage (ETS), and depth of response (DpR) on mCRC treatment has not been fully evaluated. This study aimed to investigate the predictive efficacies of these traits in mCRC patients treated with first-line 5-fluorouracil-based chemotherapy plus biologic agents, namely, cetuximab and bevacizumab. This was a retrospective analysis of the medical records of 110 patients with pathology-documented unresectable mCRC. Patients with left-sided mCRC receiving any first-line regimen showed better overall survival (OS) than those with right-sided mCRC [33.3 vs 16.3 months; hazard ratio (HR) 0.44; 95% confidence interval (CI) 0.27–0.74; p < 0.001]. In patients with left-sided tumours, treatment with chemotherapy plus cetuximab yielded longer OS than chemotherapy plus bevacizumab (50.6 vs 27.8 months, HR 0.55; 95% CI 0.32–0.97; p = 0.0378). mCRC patients with ETS and high DpR showed better OS than those lacking ETS and with low DpR (33.5 vs 19.6 months, HR 0.50, 95% CI 0.32–0.79, p = 0.023 and 38.3 vs 19.0 months, HR 0.43, 95% CI 0.28–0.68, p < 0.001, respectively). Moreover, ETS and/or high DpR achieved in patients with right-sided mCRC receiving chemotherapy plus cetuximab were associated with significantly better OS than in those lacking ETS and with low DpR (34.3 vs 10.4 months, HR 0.19, 95% CI 0.04–0.94, p = 0.025 and 34.3 vs 10.4 months, HR 0.19, 95% CI 0.04–0.94, p = 0.0257, respectively). Taken together, our study demonstrates that primary tumour location is not only a well-known prognostic factor but also a relevant predictive factor in patients with mCRC receiving chemotherapy plus cetuximab. Additionally, both ETS and DpR could predict treatment outcomes and also potentially guide cetuximab treatment even in right-sided mCRCs

    Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate

    Get PDF
    Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution

    Genetic Tracing of Jatropha

    Get PDF
    Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposon-based insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change

    Targeting Notch-1 positive acute leukemia cells by novel fucose-bound liposomes carrying daunorubicin

    Get PDF
    Complete remission by induction therapy in acute myelogenous leukemia (AML) can be achieved due to improvements in supportive and optimized therapy. However, more than 20% of patients will still need to undergo salvage therapy, and most will have a poor prognosis. Determining the specificity of drugs to leukemia cells is important since this will maximize the dose of chemotherapeutic agents that can be administered to AML patients. In turn, this would be expected to lead to reduced drug toxicity and its increased efficacy. We targeted Notch-1 positive AML cells utilizing fucose-bound liposomes, since activation of Notch-1 is required for O-fucosylation. Herein, we report that intravenously injected, L-fucose-bound liposomes containing daunorubicin can be successfully delivered to AML cells that express fucosylated antigens. This resulted in efficient tumor growth inhibition in tumor-bearing mice and decreased proliferation of AML patient-derived leukemia cells. Thus, biological targeting by fucose-bound liposomes that takes advantage of the intrinsic characteristics of AML cells could be a promising new strategy for Notch-1 positive-AML treatment

    Genetic tracing of Jatropha curcas L. From its mesoamerican origin to the world

    Get PDF
    Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposonbased insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change.Li H, Tsuchimoto S, Harada K, Yamasaki M, Sakai H, Wada N, Alipour A, Sasai T, Tsunekawa A,Tsujimoto H, Ando T, Tomemori H, Sato S, Hirakawa H, Quintero VP, Zamarripa A, Santos P, Hegazy A, Ali AM and Fukui K (2017) GeneticTracing of Jatropha curcas L. from Its Mesoamerican Origin to the World. Front. Plant Sci. 8:1539.doi: 10.3389/fpls.2017.01539

    A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons

    Get PDF
    Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure

    Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether oral administration of geranylgeranylacetone (GGA), a nontoxic anti-ulcer drug that is an inducer of heat shock protein (HSP) 70, protects against drug-induced lung injury/fibrosis <it>in vivo</it>.</p> <p>Methods</p> <p>We used a bleomycin (BLM)-induced lung fibrosis model in which mice were treated with oral 600 mg/kg of GGA before and after BLM administration. Inflammation and fibrosis were evaluated by histological scoring, hydroxyproline content in the lung and inflammatory cell count, and quantification by ELISA of macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid. Apoptosis was evaluated by the TUNEL method. The induction of HSP70 in the lung was examined with western blot analysis and its localization was determined by immunohistochemistry.</p> <p>Results</p> <p>We confirmed the presence of inflammation and fibrosis in the BLM-induced lung injury model and induction of HSP70 by oral administration of GGA. GGA prevented apoptosis of cellular constituents of lung tissue, such as epithelial cells, most likely related to the <it>de novo </it>induction of HSP70 in the lungs. GGA-treated mice also showed less fibrosis of the lungs, associated with the findings of suppression of both production of MIP-2 and inflammatory cell accumulation in the injured lung, compared with vehicle-treated mice.</p> <p>Conclusion</p> <p>GGA had a protective effect on drug-induced lung injury/fibrosis. Disease-modifying antirheumatic drugs such as methotrexate, which are indispensable for the treatment of rheumatoid arthritis, often cause interstitial lung diseases, an adverse event that currently cannot be prevented. Clinical use of GGA for drug-induced pulmonary fibrosis might be considered in the future.</p

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP
    • 

    corecore