15,360 research outputs found

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    Study of the Fusion-Fission Process in the 35Cl+24Mg^{35}Cl+^{24}Mg Reaction

    Get PDF
    Fusion-fission and fully energy-damped binary processes of the 35^{35}Cl+24^{24}Mg reaction were investigated using particle-particle coincidence techniques at a 35^{35}Cl bombarding energy of Elab_{lab} \approx 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the European Physical Journal A - Hadrons and Nucle

    Selectron Studies at e-e- and e+e- Colliders

    Get PDF
    Selectrons may be studied in both e-e- and e+e- collisions at future linear colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds and \beta threshold behavior for identical selectron pair production, but suffers from luminosity degradation and increased initial state radiation and beamstrahlung. We include all of these effects and compare the potential for selectron mass measurements in the two modes. The virtues of the e-e- collider far outweigh its disadvantages. In particular, the selectron mass may be measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure

    Study of Dissipative Collisions of 20^{20}Ne (\sim7-11 MeV/nucleon) + 27^{27}Al

    Full text link
    The inclusive energy distributions of complex fragments (3 \leqZ \leq 9) emitted in the reactions 20^{20}Ne (145, 158, 200, 218 MeV) + 27^{27}Al have been measured in the angular range 10o^{o} - 50o^{o}. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well exlained in the framework of standard statistical model. It is found that there is strong competition between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of \sim 1021^{-21} - 1022^{-22} sec., and it was found to decrease with increasing fragment mass. The angular momentum dissipations in fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. It has been found that, the estimated angular momentum dissipations, for lighter fragments in particular, are more than those predicted by the empirical sticking limit.Comment: 16 pages, 9 figure

    Physics at e-e- Colliders

    Get PDF
    An overview of the physics motivations for e-e- colliders is presented.Comment: 10 pages. Opening lecture of the 3nd International Workshop on Electron-Electron Interactions at TeV Energies (e-e-99), University of California, Santa Cruz, 10-12 December 199

    CP Violation in Heavy Neutrino Mediated eeWWe^- e^- \to W^- W^-

    Get PDF
    We consider the reaction eeWWe^- e^- \rightarrow W^- W^- mediated by possible heavy neutrino exchange at future LINAC energies of s>>2mW\sqrt{s}>> 2 m_W. This reaction is sensitive to CP phases of the neutrino mixing matrices, even at the level of Born amplitudes. Certain integrated cross-sections are shown to have the power to resolve the CP phases when the experimental configurations are varied. Asymmetries sensitive to CP violation (involving initial QED phases) for eee^- e^- and e+e+e^+ e^+ reactions are constructed and their consequences considered.Comment: 9 pages plain Latex and 4 figures available separately as uuencoded figure

    A Reproducible Study on Remote Heart Rate Measurement

    Get PDF
    This paper studies the problem of reproducible research in remote photoplethysmography (rPPG). Most of the work published in this domain is assessed on privately-owned databases, making it difficult to evaluate proposed algorithms in a standard and principled manner. As a consequence, we present a new, publicly available database containing a relatively large number of subjects recorded under two different lighting conditions. Also, three state-of-the-art rPPG algorithms from the literature were selected, implemented and released as open source free software. After a thorough, unbiased experimental evaluation in various settings, it is shown that none of the selected algorithms is precise enough to be used in a real-world scenario

    Seeking Gauge Bileptons in Linear Colliders

    Get PDF
    A promising direction to find physics beyond the standard model is to look for violation of Le,μ,τL_{e,\mu,\tau} conservation. In particular the process eeμμe^- e^- \to \mu^- \mu^- with the exchange of a gauge bilepton has a striking signal without background and is predicted in the most economical model to have a cross-section an order of magnitude higher than previous estimates.Comment: 4 pages LaTeX and 5 postscript figure
    corecore