The inclusive energy distributions of complex fragments (3 ≤Z ≤ 9)
emitted in the reactions 20Ne (145, 158, 200, 218 MeV) + 27Al have
been measured in the angular range 10o - 50o. The fusion-fission and
the deep-inelastic components of the fragment yield have been extracted using
multiple Gaussian functions from the experimental fragment energy spectra. The
elemental yields of the fusion-fission component have been found to be fairly
well exlained in the framework of standard statistical model. It is found that
there is strong competition between the fusion-fission and the deep-inelastic
processes at these energies. The time scale of the deep-inelastic process was
estimated to be typically in the range of ∼ 10−21 - 10−22 sec.,
and it was found to decrease with increasing fragment mass. The angular
momentum dissipations in fully energy damped deep-inelastic process have been
estimated from the average energies of the deep-inelastic components of the
fragment energy spectra. It has been found that, the estimated angular momentum
dissipations, for lighter fragments in particular, are more than those
predicted by the empirical sticking limit.Comment: 16 pages, 9 figure