49 research outputs found

    Seed bank persistence of clonal weeds in contrasting habitats: implications for control

    Get PDF
    The ability of weeds to form a seed bank is important for their population dynamics and management because it provides a refuge enabling reinvasion after established target plants have died. However, knowledge of the differential seed behaviour of individual species over multiple years and varying environmental conditions is surprisingly rare but necessary for effective control of diverse weed populations. We established a seed burial experiment in alpine habitats differing in management regime (i.e., forest, hay meadow and pasture) to determine whether seeds of the unpalatable perennial weeds, Veratrum album (white hellebore) and Gentiana lutea (yellow gentian) were able to delay germination and remain viable over 3years. Our study shows that both species formed a short-term persistent seed bank; in the third-year, the soil seed banks of both species were nearly depleted, having declined to <5% of their original size. Both species had strikingly different germination strategies: G. lutea seeds mainly germinated in their first-year, whilst the majority of V. album seeds germinated in their second-year. The fraction of dormant G. lutea seeds increased with seed age, indicating that seeds remained viable after forgoing germination in the previous year. Habitat-specific differences in seed germination increased with seed age, with germination fractions being lowest in moist hay meadows. This suggests that the negative effects of anoxic conditions became more pronounced as seeds aged in hay meadows. Conversely, seed dormancy was equal among habitats. The absence of a long-term persistent seed bank has important implications for the management of both nuisance and endangered-plant populations. In the case of V. album and G. lutea, re-colonization of habitats from the seed bank is unlikely after established plants have been remove

    Life-history variation in contrasting habitats: flowering decisions in a clonal perennial herb (Veratrum album)

    Get PDF
    Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat-specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat-specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy—the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density-dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size-fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs

    Resource heterogeneity and the evolution of public-goods cooperation

    Get PDF
    Authors thank NERC, BBSRC, AXA research fund, Royal Society (AB & AG) and ERC 370 (AG) for funding.Heterogeneity in resources is a ubiquitous feature of natural landscapes affecting many aspects of biology. However, the effect of environmental heterogeneity on the evolution of cooperation has been less well studied. Here, using a mixture of theory and experiments measuring siderophore production by the bacterium Pseudomonas aeruginosa as a model for public goods based cooperation, we explore the effect of heterogeneity in resource availability. We show that cooperation in metapopulations that were spatially heterogeneous in terms of resources can be maintained at a higher level than in homogeneous metapopulations of the same average resource value. The results can be explained by a positive covariance between fitness of cooperators, population size, and local resource availability, which allowed cooperators to have a disproportionate advantage within the heterogeneous metapopulations. These results suggest that natural environmental variation may help to maintain cooperation.Publisher PDFPeer reviewe

    Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination

    Get PDF
    Some microbial public goods can provide both individual and community‐wide benefits, and are open to exploitation by non‐producing species. One such example is the production of metal‐detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals – a detoxifying effect of siderophores, and exploitation of this detoxifying effect – result in a net increase or decrease. We show that the proportion of siderophore‐producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amounts of siderophore suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore‐mediated decontamination, with important consequences for potential remediation strategies

    No effect of intraspecific relatedness on public goods cooperation in a complex community

    Get PDF
    A.B. would like to acknowledge support from NERC (NE/P001130/1) and BBSRC (BB/K003240/1). S.O.B. was funded by a University of Exeter Ph.D studentship (2011–2015). A.G. is supported by a NERC Independent Research Fellowship (NE/K009524/1).Many organisms – notably microbes - are embedded within complex communities where cooperative behaviours in the form of excreted public goods can benefit other species. Under such circumstances, intraspecific interactions are likely to be less important in driving the evolution of cooperation. We first illustrate this idea with a simple theoretical model, showing that relatedness – the extent to which individuals with the same cooperative alleles interact with each other - has a reduced impact on the evolution of cooperation when public goods are shared between species. We test this empirically using strains of Pseudomonas aeruginosa that vary in their production of metal-chelating siderophores in copper contaminated compost (an interspecific public good). We show that non-siderophore producers grow poorly relative to producers under high relatedness, but this cost can be alleviated by the presence of the isogenic producer (low relatedness) and/or the compost microbial community. Hence, relatedness can become unimportant when public goods provide interspecific benefits.Publisher PDFPeer reviewe

    Prokaryote genome fluidity is dependent on effective population size

    Get PDF
    Many prokaryote species are known to have fluid genomes, with different strains varying markedly in accessory gene content through the combined action of gene loss, gene gain via lateral transfer, as well as gene duplication. However, the evolutionary forces determining genome fluidity are not yet well understood. We here for the first time systematically analyse the degree to which this distinctive genomic feature differs between bacterial species. We find that genome fluidity is positively correlated with synonymous nucleotide diversity of the core genome, a measure of effective population size Ne. No effects of genome size, phylogeny or homologous recombination rate on genome fluidity were found. Our findings are consistent with a scenario where accessory gene content turnover is for a large part dictated by neutral evolution
    corecore