86 research outputs found

    Pitx2 Differentially Regulates the Distinct Phases of Myogenic Program and Delineates Satellite Cell Lineages During Muscle Development

    Get PDF
    The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor Pitx2 might be a player within the molecular pathways controlling somite-derived muscle progenitors’ fate and SC behavior. However, the role exerted by Pitx2 in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved. Here, we show that Pitx2 inactivation in uncommitted early myogenic precursors diminished cell proliferation and migration leading to muscle hypotrophy and a low number of SCs with decreased myogenic differentiation potential. However, the loss of Pitx2 in committed myogenic precursors gave rise to normal muscles with standard amounts of SCs exhibiting high levels of Pax7 expression. This SC population includes few MYF5+ SC-primed but increased amount of less proliferative miR-106b+cells, and display myogenic differentiation defects failing to undergo proper muscle regeneration. Overall our results demonstrate that Pitx2 is required in uncommitted myogenic progenitors but it is dispensable in committed precursors for proper myogenesis and reveal a role for this transcription factor in the generation of diverse SC subpopulations.BFU2015-67131 (Spanish Ministery of Economy and Competitiveness)PID2019- 107492GB-100 (Spanish Ministry of Science and Innovation

    Tumor de pancoast presentación de un caso

    Get PDF
    Introducción: El Tumor de Pancoast se produce por crecimiento local de un tumor del vértice pulmonar que penetra fácilmente en el canal neural y destruye las raíces nerviosas octava cervical y primera y segunda torácicas. Su causa más frecuente es el cáncer de pulmón.Objetivo: Al presentar este caso, nuestro objetivo es mostrar de forma ilustrativa una de las formas neurológicas de presentación del cáncer de pulmóny señalar una vez más cómo este tipo de paciente casi siempre acude por Ortopedia y rara vez por Neumología o Medicina Interna.Presentación del caso: Se presentó una paciente que aquejó primeramente dolor en  hombro derecho, acude al ortopédico y al reumatólogo, este último  al verle las manos (uñas en vidrio de reloj y dedos hipocráticos), la remite a Neumología, se realiza radiografía de tórax, se ingresa en Medicina Interna, donde se le practica una  serie de estudios, incluida cirugía de mínimo acceso por el Grupo de TóraxConclusiones: El estudio histológico corroboró  el diagnóstico de carcinoma bronquial epidermoide, así como demostró cómo estos casos entran por Ortopedia, lo cual atrasa el  accionar médico.Motivación: Tuvimos a bien presentar este caso, que ilustra cómo los pacientes con esta patología, en muchas ocasiones, entran por Ortopedia, lo cual demora el diagnóstico y, por ende, la conducta.Palabras clave: tumor de pancoast, uñas en vidrio de reloj, dedos hipocráticos. carcinoma bronquial epidermoide.</p

    Pitx2c modulates Pax3+/Pax7+ cell populations and regulates Pax3 expression by repressing miR27 expression during myogenesis

    Get PDF
    AbstractPitx2 is a paired-related homeobox gene that is expressed in muscle progenitors during myogenesis. We have previously demonstrated that overexpression of Pitx2c isoform in myoblasts maintained these cells with a high proliferative capacity and completely blocked terminal differentiation by inducing high Pax3 expression levels (Martinez et al., 2006). We now report that Pitx2c-mediated proliferation vs. differentiation effect is maintained during in vivo myogenesis. In vivo Pitx2c loss of function leads to a decrease in Pax3+/Pax7− cell population in the embryo accompanied by an increase of Pax3+/Pax7+ cells. Pitx2c transient-transfection experiments further supported the notion that Pitx2c can modulate Pax3/Pax7 expression. Pitx2c but not Pitx3 controls Pax3/Pax7 expression, although redundant roles are elicited at the terminal myoblast differentiation. Contrary to Pitx2c, Pitx3 does not regulate cell proliferation or Pax3 expression, demonstrating the specificity of Pitx2c mediating these actions in myoblasts. Furthermore we demonstrated that Pitx2c modulates Pax3 by repressing miR27 expression and that Pax3-miR-27 modulation mediated by Pitx2c is independent of Pitx2c effects on cell proliferation. Therefore, this study sheds light on previously unknown function of Pitx2c balancing the different myogenic progenitor populations during myogenesis

    Laboratory-Scale Biodegradation of Fuel Oil No. 6 in Contaminated Soils by Autochthonous Bacteria

    Get PDF
    In order to evaluate the degradation of fuel oil no. 6 (FO6) in contaminated soil, laboratory-scale bioreactors were set up to study biostimulation, bioaugmentation, and natural attenuation processes. A solution of fertilizers was added in biostimulation and biouagmentation (0.03% N, 0.01% P). To the bioaugmentation process, an enrichment culture of indigenous hydrocarbon-degrading microorganisms was also added once a week. Total aerobic and hydrocarbon-degrading microorganisms were determined by plate count, and total petroleum hydrocarbon (TPH) concentration was determined gravimetrically (EPA method 9071b) every 15 days. After 1 year of study, degradation rate was higher for biostimulation (0.19 g TPH/day), followed by natural attenuation (0.18 g TPH/day) and bioaugmentation (0.16 g TPH/day). TPH showed a change in composition of hydrocarbons, attributed to microbiological activity. Microbial counts of hydrocarbon-degrading microorganisms were on the range of 4–6 log CFU/g soil. Preliminary bacterial identification corresponded to Pseudomonas, Rhodococcus, Actinomyces, and Bacillus strains; randomly amplified polymorphic DNA (RAPD); and denaturing gradient gel electrophoresis (DGGE) analysis demonstrated a large microbial diversity. From the degradation rates, it can be predicted that such limits will be achieved by increasing further 107–117 days of the treatments. Results demonstrated to be efficient on the restoration of contaminated soil, being an alternative to treat soils contaminated with heavy hydrocarbons

    Novel PITX2 Homeodomain-Contained Mutations from ATRIAL Fibrillation Patients Deteriorate Calcium Homeostasis

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the human population, with an estimated incidence of 1¿2% in young adults but increasing to more than 10% in 80+ years patients. Pituitary Homeobox 2, Paired Like Homeodomain 2 (PITX2c) loss-of-function in mice revealed that this homeodomain (HD)-containing transcription factor plays a pivotal role in atrial electrophysiology and calcium homeostasis and point to PITX2 as a candidate gene for AF. To address this issue, we recruited 31 AF patients for genetic analyses of both the known risk alleles and PITX2c open reading frame (ORF) re-sequencing. We found two-point mutations in the homedomain of PITX2 and three other variants in the 5¿untranslated region. A 65 years old male patient without 4q25 risk variants but with recurrent AF displayed two distinct HD-mutations, NM_000325.5:c.309G>C (Gln103His) and NM_000325.5:c.370G>A (Glu124Lys), which both resulted in a change within a highly conserved amino acid position. To address the functional impact of the PITX2 HD mutations, we generated plasmid constructs with mutated version of each nucleotide variant (MD4 and MD5, respectively) as well as a dominant negative control construct in which the PITX2 HD was lacking (DN). Functional analyses demonstrated PITX2c MD4 and PITX2c MD5 decreased Nppa-luciferase transactivation by 50% and 40%, respectively, similar to the PITX2c DN (50%), while Shox2 promoter repression was also impaired. Co-transactivation with other cardiac-enriched co-factors, such as Gata4 and Nkx2.5, was similarly impaired, further supporting the pivotal role of these mutations for correct PITX2c function. Furthermore, when expressed in HL1 cardiomyocyte cultures, the PITX2 mutants impaired endogenous expression of calcium regulatory proteins and induced alterations in sarcoplasmic reticulum (SR) calcium accumulation. This favored alternating and irregular calcium transient amplitudes, causing deterioration of the beat-to-beat stability upon elevation of the stimulation frequency. Overall this data demonstrate that these novel PITX2c HD-mutations might be causative of atrial fibrillation in the carrier.This work was supported by grants from The Spanish Ministry of Science Innovation and Universities [SAF2017-88019-C3-1-R] to L.H.-M. V.J.-S. was employed by CIBERCV [RD12/0042/0002] grant. Work was also supported by a PhD scholarship [FPU18/01250] to S.C., and partially funded by grants from Generalitat de Catalunya [SGR2017-1769] and Fundació Marato TV3 [20152030] to L.H.-M., a translational CNIC grant [2009/08] to D.F., R.C. and L.H.-M. and a grant-in-aid from the Junta de Andalucia Regional Council to D.F. and A.A. [CTS-446]

    Assessment of a New ROS1 Immunohistochemistry Clone (SP384) for the Identification of ROS1 Rearrangements in Patients with Non–Small Cell Lung Carcinoma: the ROSING Study

    Get PDF
    Introduction: The ROS1 gene rearrangement has become an important biomarker in NSCLC. The College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology testing guidelines support the use of ROS1 immunohistochemistry (IHC) as a screening test, followed by confirmation with fluorescence in situ hybridization (FISH) or a molecular test in all positive results. We have evaluated a novel anti-ROS1 IHC antibody (SP384) in a large multicenter series to obtain real-world data. Methods: A total of 43 ROS1 FISH-positive and 193 ROS1 FISH-negative NSCLC samples were studied. All specimens were screened by using two antibodies (clone D4D6 from Cell Signaling Technology and clone SP384 from Ventana Medical Systems), and the different interpretation criteria were compared with break-apart FISH (Vysis). FISH-positive samples were also analyzed with next-generation sequencing (Oncomine Dx Target Test Panel, Thermo Fisher Scientific). Results: An H-score of 150 or higher or the presence of at least 70% of tumor cells with an intensity of staining of 2+ or higher by the SP384 clone was the optimal cutoff value (both with 93% sensitivity and 100% specificity). The D4D6 clone showed similar results, with an H-score of at least 100 (91% sensitivity and 100% specificity). ROS1 expression in normal lung was more frequent with use of the SP384 clone (p < 0.0001). The ezrin gene (EZR)-ROS1 variant was associated with membranous staining and an isolated green signal FISH pattern (p = 0.001 and p = 0.017, respectively). Conclusions: The new SP384 ROS1 IHC clone showed excellent sensitivity without compromising specificity, so it is another excellent analytical option for the proposed testing algorithm

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    corecore