153 research outputs found

    The practices of apartheid as a war crime: a critical analysis

    Get PDF
    The human suffering caused by the political ideology of apartheid in South Africa during the Apartheid era (1948-1994) prompted worldwide condemnation and a variety of diplomatic and legal responses. Amongst these responses was the attempt to have apartheid recognised both as a crime against humanity in the 1973 Apartheid Convention as well as a war crime in Article 85(4)(c) of Additional Protocol I. This article examines the origins, nature and current status of the practices of apartheid as a war crime and its possible application to the Israeli-Palestinian conflict

    Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors

    Get PDF
    © 2020, The Author(s). We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models

    Inhibition of somatosensory mechanotransduction by annexin A6

    Get PDF
    Mechanically activated, slowly adapting currents in sensory neurons have been linked to noxious mechanosensation. The conotoxin NMB-1 (noxious mechanosensation blocker-1) blocks such currents and inhibits mechanical pain. Using a biotinylated form of NMB-1 in mass spectrometry analysis, we identified 67 binding proteins in sensory neurons and a sensory neuron-derived cell line, of which the top candidate was annexin A6, a membrane-associated calcium-binding protein. Annexin A6-deficient mice showed increased sensitivity to mechanical stimuli. Sensory neurons from these mice showed increased activity of the cation channel Piezo2, which mediates a rapidly adapting mechano-gated current linked to proprioception and touch, and a decrease in mechanically activated, slowly adapting currents. Conversely, overexpression of annexin A6 in sensory neurons inhibited rapidly adapting currents that were partially mediated by Piezo2. Furthermore, overexpression of annexin A6 in sensory neurons attenuated mechanical pain in a mouse model of osteoarthritis, a disease in which mechanically evoked pain is particularly problematic. These data suggest that annexin A6 can be exploited to inhibit chronic mechanical pain

    Analysis of IL2/IL21 Gene Variants in Cholestatic Liver Diseases Reveals an Association with Primary Sclerosing Cholangitis

    Get PDF
    Background/Aims: The chromosome 4q27 region harboring IL2 and IL21 is an established risk locus for ulcerative colitis (UC) and various other autoimmune diseases. Considering the strong coincidence of primary sclerosing cholangitis (PSC) with UC and the increased frequency of other autoimmune disorders in patients with primary biliary cirrhosis (PBC), we investigated whether genetic variation in the IL2/IL21 region may also modulate the susceptibility to these two rare cholestatic liver diseases. Methods: Four strongly UC-associated single nucleotide polymorphisms (SNPs) within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block were genotyped in 124 PBC and 41 PSC patients. Control allele frequencies from 1,487 healthy, unrelated Caucasians were available from a previous UC association study. Results: The minor alleles of all four markers were associated with a decreased susceptibility to PSC (rs13151961: p = 0.013, odds ratio (OR) 0.34; rs13119723: p = 0.023, OR 0.40; rs6822844: p = 0.031, OR 0.41; rs6840978: p = 0.043, OR 0.46). Moreover, a haplotype consisting of the four minor alleles also had a protective effect on PSC susceptibility (p = 0.0084, OR 0.28). A haplotype of the four major alleles was independently associated with PSC when excluding the patients with concomitant inflammatory bowel disease (p = 0.033, OR 4.18). Conclusion: The IL2/IL21 region may be one of the highly suggestive but so far rarely identified shared susceptibility loci for PSC and UC. Copyright (C) 2011 S. Karger AG, Base

    Exchange of functional domains between a bacterial conjugative relaxase and the integrase of the human adeno-associated virus

    Get PDF
    Endonucleases of the HUH family are specialized in processing single-stranded DNA in a variety of evolutionarily highly conserved biological processes related to mobile genetic elements. They share a structurally defined catalytic domain for site-specific nicking and strand-transfer reactions, which is often linked to the activities of additional functional domains, contributing to their overall versatility. To assess if these HUH domains could be interchanged, we created a chimeric protein from two distantly related HUH endonucleases, containing the N-terminal HUH domain of the bacterial conjugative relaxase TrwC and the C-terminal DNA helicase domain of the human adeno-associated virus (AAV) replicase and site-specific integrase. The purified chimeric protein retained oligomerization properties and DNA helicase activities similar to Rep68, while its DNA binding specificity and cleaving-joining activity at oriT was similar to TrwC. Interestingly, the chimeric protein could catalyse site-specific integration in bacteria with an efficiency comparable to that of TrwC, while the HUH domain of TrwC alone was unable to catalyze this reaction, implying that the Rep68 C-terminal helicase domain is complementing the TrwC HUH domain to achieve site-specific integration into TrwC targets in bacteria. Our results illustrate how HUH domains could have acquired through evolution other domains in order to attain new roles, contributing to the functional flexibility observed in this protein superfamily.This work was supported by the Medical Research Council (MRC) grant MR/N022890/1 to EH and grant 1001764 to RML; National Institutes of Health (NIH) grant RO1-GM09285 to CRE; Spanish Ministry of Economy and competitiveness (MINECO) grant BIO2013-46414-P to ML and AFM is supported by a Doc.Mobility fellowship from the Swiss National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Prediction models for diagnosis and prognosis of covid-19: : systematic review and critical appraisal

    Get PDF
    Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity. Funding: LW, BVC, LH, and MDV acknowledge specific funding for this work from Internal Funds KU Leuven, KOOR, and the COVID-19 Fund. LW is a postdoctoral fellow of Research Foundation-Flanders (FWO) and receives support from ZonMw (grant 10430012010001). BVC received support from FWO (grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). TPAD acknowledges financial support from the Netherlands Organisation for Health Research and Development (grant 91617050). VMTdJ was supported by the European Union Horizon 2020 Research and Innovation Programme under ReCoDID grant agreement 825746. KGMM and JAAD acknowledge financial support from Cochrane Collaboration (SMF 2018). KIES is funded by the National Institute for Health Research (NIHR) School for Primary Care Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme grant C49297/A27294). JM was supported by the Cancer Research UK (programme grant C49297/A27294). PD was supported by the NIHR Biomedical Research Centre, Oxford. MOH is supported by the National Heart, Lung, and Blood Institute of the United States National Institutes of Health (grant R00 HL141678). ICCvDH and BCTvB received funding from Euregio Meuse-Rhine (grant Covid Data Platform (coDaP) interref EMR187). The funders played no role in study design, data collection, data analysis, data interpretation, or reporting.Peer reviewedPublisher PD
    corecore