105 research outputs found

    Establishment of a Mouse Model of Premature Ovarian Failure Using Consecutive Superovulation

    Get PDF
    Background/Aims: This study investigated the effect of consecutive superovulation on the ovaries and established a premature ovarian failure (POF) model in mice. Methods: The mouse POF model was induced by 5-15 consecutive superovulation treatments with pregnant mare serum gonadotropin (PMSG), human chorionic gonadotropin (HCG) and prostaglandin F2α (PGF2α). Normal adult mice were compared with mice displaying natural ovarian aging. The following serum biochemical parameters were measured: including follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), estradiol (E2), inhibin B (INH B), malondialdehyde (MDA), total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. Follicles were counted using H&E staining. Levels of 8-hydroxyguanosine (8-OhdG), 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), anti-Mullerian hormone (AMH) and CDKN2A/ p16 (p16) were detected using immunohistochemical staining. Reactive oxygen species (ROS) levels were measured using dihydroethidium (DHE) staining. Cell apoptosis was detected using an in situ TUNEL fluorescence staining assay. Levels of proteins involved in ROS-related pathways and the p16 protein were detected using Western blotting. Sod1, Sod2 and Sod3 mRNA levels were detected using quantitative polymerase chain reaction (Q-PCR). Oocyte quality was evaluated using in vitro fertilization (IVF) and zygote culture. Results: Consecutive superovulation groups presented lower P, E2, SOD, GSH-Px and INH B levels, significantly higher FSH, LH, MDA and ROS levels, and significantly fewer primordial follicles compared with the control group. Consecutive superovulation groups presented significantly increased levels of Sod2, 8-OhdG, 4-HNE, NTY, significantly increased levels of the SIRT1 and FOXO1 proteins, significantly increased levels of the senescence-associated protein p16, as well as decreased AMH, Sod1 and Sod3 levels and increased granulosa cell apoptosis compared with the control group. Conclusion: Consecutive superovulation significantly decreased ovarian function and oocyte quality and increased oxidative stress and apoptosis in the ovary via a mechanism involving the p16 and SIRT1/FOXO1 signaling pathways. These findings suggest that consecutive superovulation may be used to establish a mouse model of ovarian aging

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

    Get PDF
    We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 101410^{14}, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding p=103p = 10^{-3} (approx. 3σ3\sigma) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields p=5×1051.9×104p = 5 \times 10^{-5} - 1.9 \times 10^{-4} (approx. 3.54σ3.5 - 4\sigma). Assuming a fiducial f2/3f^{-2/3} characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.40.6+0.7×10152.4^{+0.7}_{-0.6} \times 10^{-15} (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.Comment: 30 pages, 18 figures. Published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Outcome of non-surgical re-treatment

    Get PDF
    The purpose of this review was to critically analyze the relevant literature in order to synthesize an overview on the clinical outcomes (radiographically judged periapical healing and tooth survival) following root canal re‐treatment and the factors influencing them. A further aim was to explain the findings on the basis of current knowledge and understanding. The relevant literature was captured and critiqued using the principles of a systematic review. The data were classified into a coherent structure for analyses and presentation but are not presented as a systematic review; rather, the authors have chosen a narrative style to enable integration of the clinical outcomes with relevant findings from laboratory and animal studies. Overall, the outcomes were similar to those for teeth undergoing primary treatment with common factors influencing the outcomes. The major differences between the outcomes of primary and secondary root canal (re‐)treatment reside only in the ability to predictably access and negotiate the root canal system to the (residual) apical infection. The data offer a very favorable prognosis for non‐surgical root canal re‐treatment performed to guideline standards

    Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Get PDF
    Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC) perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB) at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34%) of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV) showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03) than that of contralateral normal brain (mean= 1.00±0.03; p<0.005). Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05). The rCBV data were concordant with histological analysis of microvascular density (MVD). Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value

    An Optimization Model for the Demand-Responsive Transit With Non-Fixed Stops and Multi-Vehicle Type

    No full text
    As a new type of public transportation, demand responsive transit has gradually attracted attention for its flexibility and efficiency. In order to solve problems such as single-vehicle type and fixed stop, and improve its operation efficiency, a collaborative scheduling method combining multi-occupancy vehicle type with non-fixed stop is proposed. Different from the previous studies on scheduling problems of demand responsive transit, which only focused on stop modes such as fixed or non-fixed stop or vehicle types containing single-occupancy or multi-occupancy, this paper also studies the vehicle scheduling of demand responsive transit from the perspective of combination of non-fixed stop and multi-vehicle type. In addition, carbon emission cost is innovatively added into the scheduling model, and an improved genetic algorithm with multiple crossovers within individuals is designed to accelerate the convergence speed of the algorithm and improve the solution efficiency. Finally, taking Shijiazhuang downtown regional road network as an example, the validity of the proposed scheduling method is verified. The results show that compared with the single-occupancy vehicle scheduling method, the operating costs of the multi-occupancy vehicle scheduling method can be reduced by up to 25.0&#x0025;, and the average passenger in-vehicle time is decreased by up to 8.8&#x0025;, which could significantly reduce the system operating costs on the premise of ensuring shorter total passenger travel time. Compared with the mode with fixed stops, the average full load ratio of the mode with non-fixed stops increased by 21.7&#x0025;. Besides, the convergence speed and solving speed of the proposed improved genetic algorithm are increased by 31.7&#x0025; and 4.8&#x0025;, compared with the traditional genetic algorithm

    Significantly lower rCBV in brain metastases than contralateral normal brain.

    No full text
    <p><b>A.</b> Four weeks after intracardiac injection of 231Br cells, T<sub>2</sub>-weighted MRI revealed multiple high signal intensity lesions (arrowheads) on four consecutive coronal sections of a representative mouse brain. Only a few of the lesions (arrowheads) were enhanced on T<sub>1</sub>-weighted post contrast images, one (blue arrowhead in the MRI section 3) of which showed partial enhancement, indicating intratumoral heterogeneity of BTB disruption. rCBV maps of the four sections were generated and overlaid on the T<sub>2</sub>-weighted images. <b>B.</b> The rCBV values of the metastatic lesions and their contralateral normal brain were obtained and summarized in the table. Note the color presented in the table coincides with the color of arrowhead on each of the MR images. Most of metastatic lesions had lower rCBV values than their contralateral counterparts of normal brain. <b>C.</b> Statistical analysis of rCBV in a total of 212 lesions of 9 animals obtained from the last follow-up MRI showed significantly lower rCBV of the metastatic tumors with a mean value of 0.89±0.03 (s.e.), compared to the contralateral normal brain (mean  = 1.00±0.03; p<0.005).</p
    corecore