9,228 research outputs found

    The applicability of commonly used predictive scoring systems in Indigenous Australians with sepsis: An observational study

    Full text link
    Background Indigenous Australians suffer a disproportionate burden of sepsis, however, the performance of scoring systems that predict mortality in Indigenous patients with critical illness is incompletely defined. Materials and methods The study was performed at an Australian tertiary-referral hospital between January 2014 and June 2017, and enrolled consecutive Indigenous and non-Indigenous adults admitted to ICU with sepsis. The ability of the ANZROD, APACHE-II, APACHE-III, SAPS-II, SOFA and qSOFA scores to predict death before ICU discharge in the two populations was compared. Results There were 442 individuals enrolled in the study, 145 (33%) identified as Indigenous. Indigenous patients were younger than non-Indigenous patients (median (interquartile range (IQR) 53 (43-60) versus 65 (52-73) years, p = 0.0001) and comorbidity was more common (118/145 (81%) versus 204/297 (69%), p = 0.005). Comorbidities that were more common in the Indigenous patients included diabetes mellitus (84/145 (58%) versus 67/297 (23%), p<0.0001), renal disease (56/145 (39%) versus 29/297 (10%), p<0.0001) and cardiovascular disease (58/145 (40%) versus 83/297 (28%), p = 0.01). The use of supportive care (including vasopressors, mechanical ventilation and renal replacement therapy) was similar in Indigenous and non-Indigenous patients, and the two populations had an overall case-fatality rate that was comparable (17/145 (12%) and 38/297 (13%) (p = 0.75)), although Indigenous patients died at a younger age (median (IQR): 54 (50-60) versus 70 (61-76) years, p = 0.0001). There was no significant difference in the ability of any the scores to predict mortality in the two populations. Conclusions Although the crude case-fatality rates of Indigenous and non-Indigenous Australians admitted to ICU with sepsis is comparable, Indigenous patients die at a much younger age. Despite this, the ability of commonly used scoring systems to predict outcome in Indigenous Australians is similar to that of non-Indigenous Australians, supporting their use in ICUs with a significant Indigenous patient population and in clinical trials that enrol Indigenous Australians

    Optical photometric GTC/OSIRIS observations of the young massive association Cygnus OB2

    Get PDF
    In order to fully understand the gravitational collapse of molecular clouds, the star formation process and the evolution of circumstellar disks, these phenomena must be studied in different Galactic environments with a range of stellar contents and positions in the Galaxy. The young massive association Cygnus OB2, in the Cygnus-X region, is an unique target to study how star formation and the evolution of circumstellar disks proceed in the presence of a large number of massive stars. We present a catalog obtained with recent optical observations in r,i,z filters with OSIRIS, mounted on the 10.4 m10.4\,m GTC telescope, which is the deepest optical catalog of Cyg OB2 to date. The catalog consist of 64157 sources down to M=0.15 solar masses at the adopted distance and age of Cyg OB2. A total of 38300 sources have good photometry in all three bands. We combined the optical catalog with existing X-ray data of this region, in order to define the cluster locus in the optical diagrams. The cluster locus in the r-i vs. i-z diagram is compatible with an extinction of the optically selected cluster members in the 2.64<AV<5.57 range. We derive an extinction map of the region, finding a median value of AV=4.33 in the center of the association, decreasing toward the north-west. In the color-magnitude diagrams, the shape of the distribution of main sequence stars is compatible with the presence of an obscuring cloud in the foreground at about 850+/-25 pc from the Sun.Comment: Accepted for publication ApJS 201

    STIS spectroscopy of newborn massive stars in SMC N81

    Get PDF
    Using Hubble Space Telescope observations with STIS, we study the main exciting stars of N81, a high excitation compact Hii region in the Small Magellanic Cloud (SMC). These far UV observations are the first spectroscopic measurements of stars in such a region and reveal features characteristic of an O6-O8 stellar type. The astonishing weakness of their wind profiles and their sub-luminosity (up to ~ 2 mag fainter in Mv than the corresponding dwarfs) make these stars a unique stellar population in the Magellanic Clouds. Our analysis suggests that they are probably in the Hertzsprung-Russell diagram locus of a particularly young class of massive stars, the so-called Vz luminosity class, as they are arriving on the zero age main sequence.Comment: 9 pages, 3 figure

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies

    Get PDF
    The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the sample's spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 micron morphology can be a useful tool for parametrizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf/irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 micron emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.Comment: Accepted for publication in the Astrophysical Journal; Fixed radio flux density units (mJy

    Galactic-Scale Outflow and Supersonic Ram-Pressure Stripping in the Virgo Cluster Galaxy NGC 4388

    Get PDF
    The Hawaii Imaging Fabry-Perot Interferometer (HIFI) on the University of Hawaii 2.2m telescope was used to map the Halpha and [O III] 5007 A emission-line profiles across the entire disk of the edge-on Sb galaxy NGC 4388. We confirm a rich complex of highly ionized gas that extends ~4 kpc above the disk of this galaxy. Low-ionization gas associated with star formation is also present in the disk. Evidence for bar streaming is detected in the disk component and is discussed in a companion paper (Veilleux, Bland-Hawthorn, & Cecil 1999; hereafter VBC). Non-rotational blueshifted velocities of 50 - 250 km/s are measured in the extraplanar gas north-east of the nucleus. The brighter features in this complex tend to have more blueshifted velocities. A redshifted cloud is also detected 2 kpc south-west of the nucleus. The velocity field of the extraplanar gas of NGC 4388 appears to be unaffected by the inferred supersonic (Mach number M ~ 3) motion of this galaxy through the ICM of the Virgo cluster. We argue that this is because the galaxy and the high-|z| gas lie behind a Mach cone with opening angle ~ 80 degrees. The shocked ICM that flows near the galaxy has a velocity of ~ 500 km/s and exerts insufficient ram pressure on the extraplanar gas to perturb its kinematics. We consider several explanations of the velocity field of the extraplanar gas. Velocities, especially blueshifted velocities on the N side of the galaxy, are best explained as a bipolar outflow which is tilted by > 12 degrees from the normal to the disk. The observed offset between the extraplanar gas and the radio structure may be due to buoyancy or refractive bending by density gradients in the halo gas. Velocity substructure in the outflowing gas also suggests an interaction with ambient halo gas.Comment: 29 pages including 5 figures, Latex, requires aaspp4.sty, to appear in ApJ, 520 (July 20, 1999 issue

    How Well Does the Family Longevity Selection Score Work: A Validation Test Using the Utah Population Database

    Get PDF
    The Family Longevity Selection Score (FLoSS) was used to select families for the Long Life Family Study (LLFS) but has never been validated in other populations. The goal of this paper is to validate how well the FLoSS-based selection procedure works in an independent dataset. In this paper, we computed FLoSS using the lifespan data of 234,155 individuals from a large comprehensive genealogically-based resource, the Utah Population Database (UPDB), born between 1779 and 1910 with mortality follow-up through 2012–2013. Computations of FLoSS in a specific year (1980) confirmed the survival advantage of the “exceptional” sibships (defined by LLFS FLoSS threshold, FLoSS ≄ 7). We found that the subsample of the UPDB participants born after 1900 who were from the “exceptional” sibships had survival curves similar to that of the US participants from the LLFS probands' generation. Comparisons between the offspring of parents with “exceptional” and “ordinary” survival showed the survival advantage of the “exceptional” offspring. Investigators seeking to explain the extent genetics and environment contribute to exceptional survival will benefit from the use of exceptionally long-lived individuals and their relatives. Appropriate ranking of families by survival exceptionality and their availability for the purposes of providing genetic and phenotypic data is critical for selecting participants into such studies. This study validated the FLoSS as selection criteria in family longevity studies using UPDB

    Discovery of a parsec-scale bipolar nebula around MWC 349A

    Full text link
    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 um data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.Comment: 9 pages, 6 figures, accepted for publication in A&

    Bayesian Inference in Processing Experimental Data: Principles and Basic Applications

    Full text link
    This report introduces general ideas and some basic methods of the Bayesian probability theory applied to physics measurements. Our aim is to make the reader familiar, through examples rather than rigorous formalism, with concepts such as: model comparison (including the automatic Ockham's Razor filter provided by the Bayesian approach); parametric inference; quantification of the uncertainty about the value of physical quantities, also taking into account systematic effects; role of marginalization; posterior characterization; predictive distributions; hierarchical modelling and hyperparameters; Gaussian approximation of the posterior and recovery of conventional methods, especially maximum likelihood and chi-square fits under well defined conditions; conjugate priors, transformation invariance and maximum entropy motivated priors; Monte Carlo estimates of expectation, including a short introduction to Markov Chain Monte Carlo methods.Comment: 40 pages, 2 figures, invited paper for Reports on Progress in Physic
    • 

    corecore