Abstract

This report introduces general ideas and some basic methods of the Bayesian probability theory applied to physics measurements. Our aim is to make the reader familiar, through examples rather than rigorous formalism, with concepts such as: model comparison (including the automatic Ockham's Razor filter provided by the Bayesian approach); parametric inference; quantification of the uncertainty about the value of physical quantities, also taking into account systematic effects; role of marginalization; posterior characterization; predictive distributions; hierarchical modelling and hyperparameters; Gaussian approximation of the posterior and recovery of conventional methods, especially maximum likelihood and chi-square fits under well defined conditions; conjugate priors, transformation invariance and maximum entropy motivated priors; Monte Carlo estimates of expectation, including a short introduction to Markov Chain Monte Carlo methods.Comment: 40 pages, 2 figures, invited paper for Reports on Progress in Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019