127 research outputs found

    Intense Arctic Ozone Depletion in the Spring of 2011

    Get PDF
    Observations of record-breaking ozone depletion during the Arctic spring of 2011 were made at 76˚ N in Thule, Greenland. The ozone total column amount of 290 DU measured on 18 March 2011 is the lowest value from the 12-year observation record and represents an ozone depletion of up to 48% of a typical March column. The unique 2010 – 11 vortex was characterized by sustained low stratospheric temperatures and stability that resisted breakup through March. Simultaneous observations of O3, HF, HCl, HNO3, and ClONO2 demonstrate strong subsidence and substantial conversion of chlorine from its normal reservoirs.Au printemps 2011, des observations d’appauvrissement record de l’ozone ont été faites dans l’Arctique à 76˚ N à Thule, au Groenland. Le 18 mars 2011, la colonne d’ozone total a été mesurée à 290 DU, ce qui représente la valeur la plus faible depuis que les observations ont commencé à être consignées il y a 12 ans. Cela constitue un appauvrissement de l’ozone allant jusqu’à 48 % de la colonne typiquement enregistrée en mars. Le vortex unique dénoté en 2010-2011 était caractérisé par des températures stratosphériques faibles et soutenues ainsi que par une stabilité ayant résisté à la dissipation jusqu’en mars. Des observations simultanées de O3, HF, HCl, HNO3 et ClONO2 ont démontré une forte subsidence et une conversion substan­tielle du chlore à partir des réservoirs normaux

    MLS Measurements of Stratospheric Hydrogen Cyanide During the 2015-2016 El Niño Event

    Get PDF
    It is known from ground-based measurements made during the 1982-1983 and 1997-1998 El Niño events that atmospheric hydrogen cyanide (HCN) tends to be higher during such years than at other times. The Microwave Limb Sounder (MLS) on the Aura satellite has been measuring HCN mixing ratios since launch in 2004; the measurements are ongoing at the time of writing. The winter of 2015- 2016 saw the largest El Niño event since 1997-1998. We present MLS measurements of HCN in the lower stratosphere for the Aura mission to date, comparing the 2015- 2016 El Niño period to the rest of the mission. HCN in 2015- 2016 is higher than at any other time during the mission, but ground-based measurements suggest that it may have been even more elevated in 1997-1998. As the MLS HCN data are essentially unvalidated, we show them alongside data from the MIPAS and ACE-FTS instruments; the three instruments agree reasonably well in the tropical lower stratosphere. Global HCN emissions calculated from the Global Fire Emissions Database (GFED v4.1) database are much greater during large El Niño events and are greater in 1997- 1998 than in 2015-2016, thereby showing good qualitative agreement with the measurements. Correlation between El Niño-Southern Oscillation (ENSO) indices, measured HCN, and GFED HCN emissions is less clear if the 2015-2016 event is excluded. In particular, the 2009-2010 winter had fairly strong El Niño conditions and fairly large GFED HCN emissions, but very little effect is observed in the MLS HCN

    On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study

    Get PDF
    Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53° N, °68.74° W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60° N-80° N, 110° W-0° E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8-12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of -45.4 Wm-2 for a 78° solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of -127.5 TW is estimated to have occurred on 21 August 2017 over a portion (3.1 10^6 km2) of the considered domain (60° N-80° N, 110° W-0° E). ARE regional mean daily values over the same portion of the domain vary between -65 and -25 Wm-2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires

    Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program

    Get PDF
    During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900–2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh “pollution” within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15–1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio

    Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires

    Get PDF
    Abstract From 17-22 August 2017 simultaneous enhancements of ammonia (NH3), carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were detected from ground-based solar absorption Fourier transform infrared (FTIR) spectroscopic measurements at two high-Arctic sites: Eureka (80.05°N, 86.42°W) Nunavut, Canada and Thule (76.53°N, 68.74°W), Greenland. These enhancements were attributed to wildfires in British Columbia and the Northwest Territories of Canada using FLEXPART back-trajectories and fire locations from Moderate Resolution Imaging Spectroradiometer (MODIS) and found to be the greatest observed enhancements in more than a decade of measurements at Eureka (2006-2017) and Thule (1999-2017). Observations of gas-phase NH3 from these wildfires illustrates that boreal wildfires may be a considerable episodic source of NH3 in the summertime high Arctic. Comparisons of GEOS-Chem model simulations using the Global Fire Assimilation System (GFASv1.2) biomass burning emissions to FTIR measurements and Infrared Atmospheric Sounding Interferometer (IASI) measurements showed that the transport of wildfire emissions to the Arctic was underestimated in GEOS-Chem. However, GEOS-Chem simulations showed that these wildfires contributed to surface-layer NH3 and enhancements of 0.01-0.11 ppbv and 0.05-1.07 ppbv, respectively, over the Canadian Archipelago from 15-23 August 2017

    Anomalies of O3_3, CO, C2_2H2_2, H2_2CO, and C2_2H6_6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability

    Get PDF
    Anomalies of tropospheric columns of ozone (O3_3), carbon monoxide (CO), acetylene (C2_2H2_2), formaldehyde (H2_2CO), and ethane (C2_2H6_6) are quantified during the 2020 stringent COVID-19 world-wide lockdown using multiple ground-based Fourier-transform infrared spectrometers covering urban and remote conditions. We applied an exponential smoothing forecasting approach to the data sets to estimate business-as-usual values for 2020, which are then contrasted with actual observations. The Community Atmosphere Model with chemistry (CAM-chem) is used to simulate the same gases using lockdown-adjusted and business-as-usual emissions. The role of meteorology, or natural variability, is assessed with additional CAM-chem simulations. The tropospheric column of O3_3 declined between March and May 2020 for most sites with a mean decrease of 9.2% ± 4.7%. Simulations reproduce these anomalies, especially under background conditions where natural variability explains up to 80% of the decline for sites in the Northern Hemisphere. While urban sites show a reduction between 1% and 12% in tropospheric CO, the remote sites do not show a significant change. Overall, CAM-chem simulations capture the magnitude of the anomalies and in many cases natural variability and lockdowns have opposite effects. We further used the long-term record of the Measurements of Pollution in the Troposphere (MOPITT) satellite instrument to capture global anomalies of CO. Reductions of CO vary highly across regions but North America and Europe registered lower values in March 2020. The absence of CO reduction in April and May, concomitant with reductions of anthropogenic emissions, is explained by a negative anomaly in the hydroxyl radical (OH) found with CAM-chem. The implications of these findings are discussed for methane (CH4_4), which shows a positive lifetime anomaly during the COVID-19 lockdown period. The fossil fuel combustion by-product tracer C2H2 shows a mean drop of 13.6% ± 8.3% in urban Northern Hemisphere sites due to the reduction in emissions and in some sites exacerbated by natural variability. For some sites with anthropogenic influence there is a decrease in C2_2H6_6. The simulations capture the anomalies but the main cause may be related to natural variability. H2_2CO declined during the stringent 2020 lockdown in all urban sites explained by reductions in emissions of precursors
    corecore