137 research outputs found
The Rise and Fall of Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia
Both surface water temperatures and the intensity of thermal stratification have increased recently in large lakes throughout the world. Such physical changes can be accompanied by shifts in plankton community structure, including changes in relative abundances and depth distributions. Here we analyzed 45 years of data from Lake Baikal, the worldâs oldest, deepest, and most voluminous lake, to assess long-term trends in the depth distribution of pelagic phytoplankton and zooplankton. Surface water temperatures in Lake Baikal increased steadily between 1955 and 2000, resulting in a stronger thermal gradient within the top 50 m of the water column. In conjunction with these physical changes our analyses reveal significant shifts in the daytime depth distribution of important phytoplankton and zooplankton groups. The relatively heavy diatoms, which often rely on mixing to remain suspended in the photic zone, shifted downward in the water column by 1.90 m y-1, while the depths of other phytoplankton groups did not change significantly. Over the same time span the density-weighted average depth of most major zooplankton groups, including cladocerans, rotifers, and immature copepods, exhibited rapid shifts toward shallower positions (0.57â0.75 m y21). As a result of these depth changes the vertical overlap between herbivorous copepods (Epischura baikalensis) and their algal food appears to have increased through time while that for cladocerans decreased. We hypothesize that warming surface waters and reduced mixing caused these ecological changes. Future studies should examine how changes in the vertical distribution of plankton might impact energy flow in this lake and others
Ecology under lake ice
Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer âgrowing seasonsâ. We executed the first global quantitative synthesis on underâice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winterâsummer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lakeâspecific, speciesâspecific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass
Climate Change and the Worldâs âSacred SeaââLake Baikal, Siberia
Lake Baikalâthe world\u27s largest, oldest, and most biotically diverse lakeâis responding strongly to climate change, according to recent analyses of water temperature and ice cover. By the end of this century, the climate of the Baikal region will be warmer and wetter, particularly in winter. As the climate changes, ice cover and transparency, water temperature, wind dynamics and mixing, and nutrient levels are the key abiotic variables that will shift, thus eliciting many biotic responses. Among the abiotic variables, changes in ice cover will quite likely alter food-web structure and function most because of the diverse ways in which ice affects the lake\u27s dominant primary producers (endemic diatoms), the top predator (the world\u27s only freshwater seal), and other abiotic variables. Melting permafrost will probably exacerbate the effects of additional anthropogenic stressors (industrial pollution and cultural eutrophication) and could greatly affect ecosystem functioning
A global database of lake surface temperatures collected by in situ and satellite methods from 1985â2009
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985â2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues
Rapid and highly variable warming of lake surface waters around the globe
In this first worldwide synthesis of in situ and satelliteâderived lake data, we find that lake summer surface water temperatures rose rapidly (global meanâ=â0.34°C decadeâ1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factorsâfrom seasonally iceâcovered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decadeâ1) to iceâfree lakes experiencing increases in air temperature and solar radiation (0.53°C decadeâ1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes
A unified dataset of colocated sewage pollution, periphyton, and benthic macroinvertebrate community and food web structure from Lake Baikal (Siberia)
Sewage released from lakeside development can introduce nutrients and micropollutants that can restructure aquatic ecosystems. Lake Baikal, the worldâs most ancient, biodiverse, and voluminous freshwater lake, has been experiencing localized sewage pollution from lakeside settlements. Nearby increasing filamentous algal abundance suggests benthic communities are responding to localized pollution. We surveyed 40-km of Lake Baikalâs southwestern shoreline from 19 to 23 August 2015 for sewage indicators, including pharmaceuticals, personal care products, and microplastics, with colocated periphyton, macroinvertebrate, stable isotope, and fatty acid samplings. The data are structured in a tidy format (a tabular arrangement familiar to limnologists) to encourage reuse. Unique identifiers corresponding to sampling locations are retained throughout all data files to facilitate interoperability among the datasetâs 150+ variables. For Lake Baikal studies, these data can support continued monitoring and research efforts. For global studies of lakes, these data can help characterize sewage prevalence and ecological consequences of anthropogenic disturbance across spatial scales
Do synthesis centers synthesize? A semantic analysis of topical diversity in research
Synthesis centers are a form of scientific organization that catalyzes and supports research that integrates diverse theories, methods and data across spatial or temporal scales to increase the generality, parsimony, applicability, or empirical soundness of scientific explanations. Synthesis working groups are a distinctive form of scientific collaboration that produce consequential, high-impact publications. But no one has asked if synthesis working groups synthesize: are their publications substantially more diverse than others, and if so, in what ways and with what effect? We investigate these questions by using Latent Dirichlet Analysis to compare the topical diversity of papers published by synthesis center collaborations with that of papers in a reference corpus. Topical diversity was operationalized and measured in several ways, both to reflect aggregate diversity and to emphasize particular aspects of diversity (such as variety, evenness, and balance). Synthesis center publications have greater topical variety and evenness, but less disparity, than do papers in the reference corpus. The influence of synthesis center origins on aspects of diversity is only partly mediated by the size and heterogeneity of collaborations: when taking into account the numbers of authors, distinct institutions, and references, synthesis center origins retain a significant direct effect on diversity measures. Controlling for the size and heterogeneity of collaborative groups, synthesis center origins and diversity measures significantly influence the visibility of publications, as indicated by citation measures. We conclude by suggesting social processes within collaborations that might account for the observed effects, by inviting further exploration of what this novel textual analysis approach might reveal about interdisciplinary research, and by offering some practical implications of our results.publishedVersio
Best practices for virtual participation in meetings : experiences from synthesis centers
Publisher PDFPeer reviewe
Effects of spatially heterogeneous lakeside development on nearshore biotic communities in a large, deep, oligotrophic lake
Sewage released from lakeside development can reshape ecological communities. Nearshore periphyton can rapidly assimilate sewage-associated nutrients, leading to increases of filamentous algal abundance, thus altering both food abundance and quality for grazers. In Lake Baikal, a large, ultra-oligotrophic, remote lake in Siberia, filamentous algal abundance has increased near lakeside developments, and localized sewage input is the suspected cause. These shifts are of particular interest in Lake Baikal, where endemic littoral biodiversity is high, lakeside settlements are mostly small, tourism is relatively high (~1.2 million visitors annually), and settlements are separated by large tracts of undisturbed shoreline, enabling investigation of heterogeneity and gradients of disturbance. We surveyed sites along 40 km of Baikalâs southwestern shore for sewage indicatorsâpharmaceuticals and personal care products (PPCPs) and microplasticsâas well as periphyton and macroinvertebrate abundance and indicators of food web structure (stable isotopes and fatty acids). Summed PPCP concentrations were spatially related to lakeside development. As predicted, lakeside development was associated with more filamentous algae and lower abundance of sewagesensitive mollusks. Periphyton and macroinvertebrate stable isotopes and essential fatty acids suggested that food web structure otherwise remained similar across sites; yet, the invariance of amphipod fatty acid composition, relative to periphyton, suggested that grazers adjust behavior or metabolism to compensate for different periphyton assemblages. Our results demonstrate that even low levels of human disturbance can result in spatial heterogeneity of nearshore ecological responses, with potential for changing trophic interactions that propagate through the food web
- âŠ