1,196 research outputs found

    Numerical two-dimensional calculations of the formation of the solar nebula

    Get PDF
    Numerical two dimensional calculations of the formation of the solar nebula are presented. The following subject areas are covered: (1) observational constraints of the properties of the initial solar nebula; (2) the physical problem; (3) review if two dimensional calculations of the formation phase; (4) recent models with hydrodynamics and radiative transport; and (5) further evolution of the system

    Architecture and data processing alternatives for the tse computer. Volume 4: Image rotation using tse operations

    Get PDF
    The tse computer's capability of achieving image congruence between temporal and multiple images with misregistration due to rotational differences is reported. The coordinate transformations are obtained and a general algorithms is devised to perform image rotation using tse operations very efficiently. The details of this algorithm as well as its theoretical implications are presented. Step by step procedures of image registration are described in detail. Numerous examples are also employed to demonstrate the correctness and the effectiveness of the algorithms and conclusions and recommendations are made

    In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Get PDF
    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.Comment: 19 pages, 10 figures, accepted to Ap

    Evolution of Ohmically Heated Hot Jupiters

    Get PDF
    We present calculations of thermal evolution of Hot Jupiters with various masses and effective temperatures under Ohmic dissipation. The resulting evolutionary sequences show a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of alkali metals in the atmosphere, compatible with the trend of the data. The degree of inflation shows that Ohmic dissipation, along with the likely variability in heavy element content can account for all of the currently detected radius anomalies. Furthermore, we find that in absence of a massive core, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores.Comment: Accepted to The Astrophysical Journal (2011) 735-2, 9 pages, 8 figures, updated figures 2-

    Numerical studies of collapsing interstellar clouds

    Get PDF
    Numerical simulation of the structure and evolution of interstellar clouds was initiated. Steps were taken toward an integrated treatment of the dynamical, thermal, and chemical processes entering model calculations. A detailed study was made of radiative transfer in molecular lines to allow model predictions to be tested against empirical data. The calculations have successfully reproduced and explained several observed cloud properties, including abundances of complex molecular species and the apparent depletion of CO in dense cores

    Protoplanetary Formation and the FU Orionis Outburst

    Get PDF
    The following three publications which reference the above grant from the NASA Origins of Solar Systems program are attached and form the final technical report for this project. The research involved comparisons of the spectral energy distributions of FU Orionis objects with theoretical models and associated studies of the structure of the outbursting accretion disks, as well as related studies on the effects of magnetic fields in disks, which will lead in the future to models of FU Orionis outbursts which include the effects of magnetic fields. The project was renewed under a new grant NAGW-4456, entitled 'Effects of FU Orionis Outbursts on Protoplanetary Disks'. Work now being prepared for publication deals more specifically with the issue of the effects of the outbursts on protoplanetary formation. Models of the spectral energy distribution of FU Orionis stars. A simple model of a buoyant magnetic dynamo in accretion disks and a numerical study of magnetic buoyancy in an accretion disk have been submitted

    Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anti-Cyclonic Vortex

    Full text link
    We study the formation of a giant gas planet by the core--accretion gas--capture process, with numerical simulations, under the assumption that the planetary core forms in the center of an anti-cyclonic vortex. The presence of the vortex concentrates particles of centimeter to meter size from the surrounding disk, and speeds up the core formation process. Assuming that a planet of Jupiter mass is forming at 5 AU from the star, the vortex enhancement results in considerably shorter formation times than are found in standard core--accretion gas--capture simulations. Also, formation of a gas giant is possible in a disk with mass comparable to that of the minimum mass solar nebula.Comment: 27 pages, 4 figures, ApJ in pres

    Protostellar collapse: rotation and disk formation

    Full text link
    We present some important conclusions from recent calculations pertaining to the collapse of rotating molecular cloud cores with axial symmetry, corresponding to evolution of young stellar objects through classes 0 and begin of class I. Three main issues have been addressed: (1) The typical timescale for building up a preplanetary disk - once more it turned out that it is of the order of one free-fall time which is decisively shorter than the widely assumed timescale related to the so-called 'inside-out collapse'; (2) Redistribution of angular momentum and the accompanying dissipation of kinetic (rotational) energy - together these processes govern the mechanical and thermal evolution of the protostellar core to a large extent; (3) The origin of calcium-aluminium-rich inclusions (CAIs) - due to the specific pattern of the accretion flow, material that has undergone substantial chemical and mineralogical modifications in the hot (exceeding 900 K) interior of the protostellar core may have a good chance to be advectively transported outward into the cooler remote parts (beyond 4 AU, say) of the growing disk and to survive there until it is incorporated into a meteoritic body.Comment: 4 pages, 4 figure

    Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to the Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star

    Full text link
    We revisit the calculation of the Ohmic dissipation in a hot Jupiter presented in Laine et al. (2008) by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modelled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced Ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small co-rotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/anti-parallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model in Laine et al. (2008) and find that the planet's radius is sustained at a nearly constant value by the Ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.Comment: about 40 pages, 10 figures, Accepted for publication in The Astrophysical Journa
    corecore