12 research outputs found

    Tratamiento farmacológico de la emergencia Hipertensiva

    Get PDF
    Se presenta la emergencia hipertensiva desde varios puntos de vista. Se define la entidad, se abordaron las diferentes formas de presentación así como las causas que la producen. Se exponeel tratamiento de elección para cada complicación, con dosis, vía de administración y efectos adversos

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Tratamiento inicial de la hipertensión arterial

    No full text
    Se plantea la clasificación de los medicamentos hipotensores, asi como las características que debe de tener un antihipertensivo ideal. Se exponen algunas acciones metabólicas de estos medicamentos. Se considera el tratamiento inicial con antihipertensivo cuando coexisten otrasalteraciones en el paciente. Se revisa las indicaciones y contraindicaciones de los diferentes agentes hipotensores arteriales. Se expresan las dosis de los medicamentos más utilizados en nuestro medio. Se pone de manifiesto la monoterapia en el tratamiento de la hipertensión, siendolos diuréticos, beta bloqueadores, anticálcicos, alfa bloqueadores e inhibidores de la enzima convertasa, los medicamentos que se utilizan actualmente para el inicio del tratamiento antihipertensivo siguiendo las características del paciente

    Tratamiento farmacológico de la emergencia Hipertensiva

    Get PDF
    Se presenta la emergencia hipertensiva desde varios puntos de vista. Se define la entidad, se abordaron las diferentes formas de presentación así como las causas que la producen. Se exponeel tratamiento de elección para cada complicación, con dosis, vía de administración y efectos adversos

    Tratamiento inicial de la hipertensión arterial

    No full text
    Se plantea la clasificación de los medicamentos hipotensores, asi como las características que debe de tener un antihipertensivo ideal. Se exponen algunas acciones metabólicas de estos medicamentos. Se considera el tratamiento inicial con antihipertensivo cuando coexisten otrasalteraciones en el paciente. Se revisa las indicaciones y contraindicaciones de los diferentes agentes hipotensores arteriales. Se expresan las dosis de los medicamentos más utilizados en nuestro medio. Se pone de manifiesto la monoterapia en el tratamiento de la hipertensión, siendolos diuréticos, beta bloqueadores, anticálcicos, alfa bloqueadores e inhibidores de la enzima convertasa, los medicamentos que se utilizan actualmente para el inicio del tratamiento antihipertensivo siguiendo las características del paciente

    Attainable yield and soil texture as drivers of maize response to nitrogen: a synthesis analysis for Argentina

    No full text
    The most widely used approach for prescribing fertilizer nitrogen (N) recommendations in maize (Zea Mays L.) in Argentina is based on the relationship between grain yield and the available N (kg N ha−1), calculated as the sum of pre-plant soil NO3--N at 0−60 cm depth (PPNT) plus fertilizer N (Nf). However, combining covariates related to crop N demand and soil N supply at a large national scale remains unexplored for this model. The aim of this work was to identify yield response patterns associated to yield environment (crop N demand driver) and soil texture (soil N supply driver). A database of 788 experiments (1980−2016) was gathered and analyzed combining quadratic-plateau regression models with bootstrapping to address expected values and variability on response parameters and derived quantities. The database was divided into three groups according to soil texture (fine, medium and coarse) and five groups based on the empirical distribution of maximum observed yields (from Very-Low = 13.1 Mg ha−1) resulting in fifteen groups. The best model included both, attainable yield environment and soil texture. The yield environment mainly modified the agronomic optimum available N (AONav), with an expected increase rate of ca. 21.4 kg N Mg attainable yield−1, regardless of the soil texture. In Very-Low yield environments, AONav was characterized by a high level of uncertainty, related to a poor fit of the N response model. To a lesser extent, soil texture modified the response curvature but not the AONav, mainly by modifying the response rate to N (Fine > Medium > Coarse), and the N use efficiencies. Considering hypothetical PPNT levels from 40 to 120 kg N ha−1, the expected agronomic efficiency (AENf) at the AONav varied from 7 to 31, and 9–29 kg yield response kg fertilizer N (Nf)−1, for Low and Very-High yield environments, respectively. Similarly, the expected partial factor productivity (PFPNf) at the AONav ranged from 62 to 158, and 55–99 kg yield kg Nf−1, for the same yield environments. These results highlight the importance of combining attainable yield environment and soil texture metadata for refining N fertilizer recommendations. Acknowledging the still low N fertilizer use in Argentina, space exists to safely increasing N fertilizer rates, steering the historical soil N mining profile to a more sustainable agro-environmental scenario in the Pampas.Fil: Correndo, Adrián A.. Kansas State University; Estados UnidosFil: Gutiérrez Boem, Flavio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: García, Fernando O.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Alvarez, Carolina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Álvarez, Cristian. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Angeli, Ariel. I+D CREA; ArgentinaFil: Barbieri, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Barraco, Mirian Raquel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Berardo, Angel. Laboratorio de Suelo S.a.; ArgentinaFil: Boxler, Miguel. Private Consultant; ArgentinaFil: Calviño, Pablo Antonio. Private Consultant; ArgentinaFil: Capurro, Julia E.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Carta, Héctor. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Caviglia, Octavio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Diaz Zorita, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Agronomía; ArgentinaFil: Díaz Valdéz, Santiago. Bayer Crop Science; ArgentinaFil: Echeverría, Hernán E.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Espósito, Gabriel Pablo. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Ferrari, Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ferraris, Gustavo Nestor. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Gambaudo, Sebastian Pedro. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Private Consultant; ArgentinaFil: Gudelj, Vicente. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ioele, Juan P.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Melchiori, Ricardo J. M.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Molino, Josefina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Orcellet, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Pagani, Agustin. Clarion Inc.; ArgentinaFil: Pautasso, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Reussi Calvo, Nahuel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Laboratorio de Suelo S.a.; ArgentinaFil: Redel, Matías. Private Consultant; ArgentinaFil: Rillo, Sergio. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Rimski-korsakov, Helena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Sainz Rozas, Hernan Rene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Saks, Matías. Bunge Argentina S.A; ArgentinaFil: Tellería, María Guadalupe. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ventimiglia, Luis. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Zorzín, Jose L.. Private Consultant; ArgentinaFil: Zubillaga de Sanahuja, María de Las Mercedes. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentin
    corecore