13 research outputs found

    The Computational Cost of Asynchronous Neural Communication

    Get PDF
    Biological neural computation is inherently asynchronous due to large variations in neuronal spike timing and transmission delays. So-far, most theoretical work on neural networks assumes the synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at understanding the barriers of asynchronous neural computation from an algorithmic perspective. We consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural Networks 97] to the asynchronous setting by taking into account edge and node delays. - Edge Delays: We define an asynchronous model for spiking neurons in which the latency values (i.e., transmission delays) of non self-loop edges vary adversarially over time. This extends the recent work of [Hitron and Parter, ESA\u2719] in which the latency values are restricted to be fixed over time. Our first contribution is an impossibility result that implies that the assumption that self-loop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly, in real biological networks self-loop edges (a.k.a. autapse) are indeed free of delays, and the latter has been noted by neuroscientists to be crucial for network synchronization. To capture the computational challenges in this setting, we first consider the implementation of a single NOT gate. This simple function already captures the fundamental difficulties in the asynchronous setting. Our key technical results are space and time upper and lower bounds for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers [Awerbuch and Peleg, FOCS\u2790] and following [Hitron and Parter, ESA\u2719], we then provide a general synchronizer machinery. Our construction is very modular and it is based on efficient circuit implementation of threshold gates. The complexity of our scheme is measured by the overhead in the number of neurons and the computation time, both are shown to be polynomial in the largest latency value, and the largest incoming degree ? of the original network. - Node Delays: We introduce the study of asynchronous communication due to variations in the response rates of the neurons in the network. In real brain networks, the round duration varies between different neurons in the network. Our key result is a simulation methodology that allows one to transform the above mentioned synchronized solution under edge delays into a synchronized under node delays while incurring a small overhead w.r.t space and time

    Noncardiac Chest Pain and Psychopathology in Children and Adolescents

    No full text
    Objective: We sought to examine the prevalence of DSM-IV psychiatric disorders in children and adolescents with complaints of noncardiac chest pain (NCCP). Method: We assessed 27 youngsters (ages 8-17 years) referred to a pediatric cardiology practice with complaints of NCCP. Each child and a parent were interviewed using the Anxiety Disorders Interview Schedule for Children. Results: Sixteen youngsters (59%) were diagnosed with a current DSM-IV disorder. Fifteen (56%) had a current anxiety disorder, nine of whom were diagnosed with panic disorder. One participant was diagnosed with a depressive disorder. Conclusion: Results of this preliminary study suggest that DSM-IV anxiety disorders may be common in youngsters with NCCP. No evidence was found for high prevalence of depression in this sample. Larger controlled studies are needed to determine the prevalence and impact of psychopathology in youngsters with NCCP

    Cardiopulmonary Exercise Testing in Childhood in Late Preterms: Comparison to Early Preterms and Term-Born Controls

    No full text
    Background: Late preterm (340–366 weeks gestational age [GA]) infants may have abnormal pulmonary development and possible exercise physiology parameters. We aim to assess the effect of late prematurity on exercise capacity in childhood and to compare it to early preterm (EP) (born < 300 GA), and to term healthy control (TC) (>370 week GA). Methods: Late preterm and early preterm (7–10 years) completed a cardiopulmonary exercise test (CPET) and spirometry and were compared to EP and to TC. Results: Eighty-four children (age 9.6 ± 1.0 years, 48% girls) participated. Twenty-one former LP were compared to 38 EP (15 with Bronchopulmonary dysplasia (BPD) [EP+], 23 without BPD [EP−]) and to 25 TC children. Peak oxygen uptake (peakV̇O2) was statistically lower than in the TC, but within the normal range, and without difference from the EP (LP 90.2 ± 15.1%, TC 112.4 ± 16.9%, p < 0.001; EP+ 97.3 ± 25.5%, EP− 85.4 ± 20.8%, p = 0.016 and p < 0.001, respectively, when compared with TC). Lung function (FEV1) was lower than normal only in the EP+ (75.6 ± 14.9% predicted, compared with 12.5 ± 87.8 in EP−, 87.5 ± 16.9 in LP and 91.0 ± 11.7 in TC). Respiratory and cardiac limitations were similar between all four study groups. Conclusions: This study demonstrated lower exercise capacity (peakV̇O2) in former LP children compared with healthy term children. Exercise capacity in LP was comparable to that of EP, with and without BPD. However, the exercise test parameters, specifically peakV̇O2, were within the normal range, and no significant physiological exercise limitations were found

    Individualized Assessment of Exercise Capacity in Response to Acute and Long-Term Enzyme Replacement Therapy in Pediatric Pompe Disease

    No full text
    Background: Enzyme replacement therapy (ERT) with alglucosidase alfa improves the prospect of patients with infantile-onset Pompe disease (IOPD). However, a progressive decline has been reported. Objective quantification of the response to ERT when assessing newer strategies is warranted. Methods: This combined retrospective-prospective study assessed the acute and long-term effects of ERT on exercise in IOPD patients. Evaluation included cardiopulmonary exercise testing (CPET), 6-min walking test (6MWT), spirometry, motor function test (GMFM-88) and enzyme blood levels. Results: Thirty-four CPETs (17 pre- and 17 two days-post ERT) over variable follow-up periods were performed in four patients. Two days following ERT, blood enzyme levels increased (median, 1.22 and 10.15 ÎŒmol/L/h (p = 0.003)). However, FEV1, FVC and GMFM-88, the median 6MWD and the peak VO2 were unchanged. Long-term evaluations showed stabilization in young patients but progressive deterioration in adolescents. Clinical deterioration was associated with more pronounced deterioration in peak VO2 followed in the decreasing order by 6MWD, FVC and GMFM-88. Conclusions: The peak VO2 and 6MWD might serve as more sensitive markers to assess clinical deterioration. More studies are needed to clarify the sensitivity of the peak VO2 and 6MWT for quantification of individualized response. This may be important when assessing newer strategies and formulations in IOPD

    Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping

    Get PDF
    Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of >58000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and invitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of >12000 eQTL mapped for >8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs. Significance Statement: Fruit-quality traits of melon were studied by linking genotypic, metabolic and transcriptomic data from a recombinant inbred line population. High resolution RNA-Seq-based quantitative trait loci and expression-QTL analyses enabled the identification of two genes that affect aroma and color
    corecore