15 research outputs found

    Cartas para crecer con amor

    Get PDF
    Ruth Chacón, Luz Acevedo y Ana Guío, docentes del Colegio Rodolfo Llinás, preocupadas por el impacto de las TIC en la comunicación cotidiana de los estudiantes deciden adelantar un proyecto escolar que le ha devuelto la importancia a la forma de comunicación epistolar para estrechar los lazos entre la escuela y la familia. Las cartas van y vienen con mensajes que recuperan con la calidez de las palabras, el tejido de las relaciones

    Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation

    Get PDF
    233294Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos-expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer.We thank Drs. N. Djouder, M. Petruzzelli, R. Ricci, F.X Real, K.D. Bissig, and members of the Wagner laboratory for critical reading of the manuscript and valuable sugges- tions; Dr. H. Schönthaler for help with the bioinformatics analysis; V. Bermeo for technical help; and G. Luque, S. Leceta, and G. Medrano for assisting with mouse experiments. The E.F. Wagner laboratory is supported by grants from the Spanish Ministry of Economy, Industry, and Competitiveness (BFU2012-40230 and SAF2015-70857, co- funded by the European Regional Development Fund), a European Research Council– advanced grant (ERC-FCK/2008/37), and Worldwide Cancer Research (13-0216). R. Hamacher was supported by the Deutsche Forschungsgemeinschaft (HA 6068/1-1), M.K. Thomsen by AUFF Nova, and S.C. Hasenfuss by a Boehringer Ingelheim Fonds PhD fellowship. The authors declare no competing financial interests. Author contributions: L. Bakiri and R. Hamacher designed and performed exper- iments, analyzed data, prepared figures, and wrote the manuscript. O. Graña analyzed RNA-seq and public microarray data, A. Guío-Carrión provided expert technical assis- tance, R. Campos-Olivas acquired and analyzed NMR data, L. Martinez analyzed flow cytometry data, M.K. Thomsen performed experiments with human cell lines, S.C. Hasenfuss performed experiments with primary hepatocytes and data mining, and H.P. Dienes performed pathological analysis on tissue sections. E.F. Wagner directed the study, approved the data, and wrote and edited the paper. All authors read and commented on the manuscript.S

    Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice.

    Get PDF
    Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging

    Synthesis and preliminary pharmacological evaluation of methoxilated indoles with possible dopaminergic central action

    Get PDF
    Compounds 5-7 were synthesized from 4-tetralones with o-iodoanilines by a radical nucleophilic substitution or SRN1 reaction, and were pharmacologically evaluated in order to establish their possible antagonistic action on the central dopaminergic receptors. Behavioural parameters, such as stereotypy in rats were measured after intracerebroventricular administration of these compounds at doses of 10 μg/5 μL. Our results demonstrate that compounds 5-7 do not affect stereotypy behaviour. However, they inhibit the apomorphine-induced stereotypy behaviour, suggesting the involvement of the central dopaminergic system. Also we observe that there is a concordance between the behavioural profiles induced by our compounds and those reported for clozapine 8 and ziprasidone 9. It is plausible to suggest that compounds 5-7 could be acting as potential atypical antipsychotic agents. Quantum calculations performed on the basis of a comparative conformational study of their structures indicate a stereoelectronic similarity between the basic nuclei of compounds 4 and 5-7. In addition Molecular Dynamics (MD) simulations performed on compounds 5-7 at the binding site of dopamine D2 receptor suggest that these compounds could interact with the human D2 dopamine receptors.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

    Get PDF
    IMPORTANCE The consumption of broad-spectrum drugs has increased as a consequence of the spread of multidrug-resistant (MDR) Escherichia coli. Finding alternatives for these infections is critical, for which some neglected drugs may be an option. OBJECTIVE To determine whether fosfomycin is noninferior to ceftriaxone or meropenem in the targeted treatment of bacteremic urinary tract infections (bUTIs) due to MDR E coli. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, pragmatic, open clinical trial was conducted at 22 Spanish hospitals from June 2014 to December 2018. Eligible participants were adult patients with bacteremic urinary tract infections due to MDR E coli; 161 of 1578 screened patients were randomized and followed up for 60 days. Data were analyzed in May 2021. INTERVENTIONS Patients were randomized 1 to 1 to receive intravenous fosfomycin disodium at 4 g every 6 hours (70 participants) or a comparator (ceftriaxone or meropenem if resistant; 73 participants) with the option to switch to oral fosfomycin trometamol for the fosfomycin group or an active oral drug or pa renteral ertapenem for the comparator group after 4 days. MAIN OUTCOMES AND MEASURES The primary outcome was clinical and microbiological cure (CMC) 5 to 7 days after finalization of treatment; a noninferiority margin of 7% was considered. RESULTS Among 143 patients in the modified intention-to-treat population (median [IQR] age, 72 [62-81] years; 73 [51.0%] women), 48 of 70 patients (68.6%) treated with fosfomycin and 57 of 73 patients (78.1%) treated with comparators reached CMC (risk difference, -9.4 percentage points; 1-sided 95% CI, -21.5 to infinity percentage points; P = .10). While clinical or microbiological failure occurred among 10 patients (14.3%) treated with fosfomycin and 14 patients (19.7%) treated with comparators (risk difference, -5.4 percentage points; 1-sided 95% CI. -infinity to 4.9; percentage points; P = .19), an increased rate of adverse event-related discontinuations occurred with fosfomycin vs comparators (6 discontinuations [8.5%] vs 0 discontinuations; P = .006). In an exploratory analysis among a subset of 38 patients who underwent rectal colonization studies, patients treated with fosfomycin acquired a new ceftriaxone-resistant or meropenem-resistant gram-negative bacteria at a decreased rate compared with patients treated with comparators (0 of 21 patients vs 4 of 17 patients [23.5%]; 1-sided P = .01). CONCLUSIONS AND RELEVANCE This study found that fosfomycin did not demonstrate noninferiority to comparators as targeted treatment of bUTI from MDR E coli; this was due to an increased rate of adverse event-related discontinuations. This finding suggests that fosfomycin may be considered for selected patients with these infections

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Dynamics of telomeric repeat-containing RNA expression in early embryonic cleavage stages with regards to maternal age.

    Get PDF
    Telomeres are transcribed into long non-coding RNAs known as Telomeric Repeat-Containing RNA (TERRA). They have been shown to be essential regulators of telomeres and to act as epigenomic modulators at extra-telomeric sites. However the role of TERRA during early embryonic development has never been investigated. Here, we show that TERRA is expressed in murine and bovine early development following a wave pattern. It starts at 4-cell stage, reaching a maximum at the 16-cell followed by a decline at the morula and blastocyst stages. Moreover, TERRA expression is not affected by increasing oocyte donor age whereas telomere length does. This indicates that TERRA expression is independent of the telomere length in early development. Our findings anticipate an essential role of TERRA in early stages of development and this might be useful in the future for a better understanding of age related female infertility.Dr P. Kordowitzki was supported by KNOW consortium (Poland MS&HE, Decision No. 05-1/KNOW2/2015) and by a special statutory fund of DRI&P IAR&FR PAS in Olsztyn. The support of Sagrario Ortega and co-workers is gratefully acknowledged. Research in the Blasco Lab is funded by the Spanish Ministry of Economy and Competitiveness Projects (SAF2013-45111-R and SAF2015-72455-EXP), the Comunidad de Madrid Project (S2017/BMD-3770), the World Cancer Research (WCR) Project (16-1177), and the Fundacion Botin (Spain).S

    Shorter telomere lengths in patients with severe COVID-19 disease.

    Get PDF
    The incidence of severe manifestations of COVID-19 increases with age with older patients showing the highest mortality, suggesting that molecular pathways underlying aging contribute to the severity of COVID-19. One mechanism of aging is the progressive shortening of telomeres, which are protective structures at chromosome ends. Critically short telomeres impair the regenerative capacity of tissues and trigger loss of tissue homeostasis and disease. The SARS-CoV-2 virus infects many different cell types, forcing cell turn-over and regeneration to maintain tissue homeostasis. We hypothesize that presence of short telomeres in older patients limits the tissue response to SARS-CoV-2 infection. We measure telomere length in peripheral blood lymphocytes COVID-19 patients with ages between 29 and 85 years-old. We find that shorter telomeres are associated to increased severity of the disease. Individuals within the lower percentiles of telomere length and higher percentiles of short telomeres have higher risk of developing severe COVID-19 pathologies.We thank D. Megias and G. Mata for their help in confocal microscopy. Research in the Blasco lab is funded by the Spanish Ministry of Science and Innovation Projects (SAF2017-82623-R and SAF2015-72455-EXP), the Comunidad de Madrid Project (B2017/BMD-3770), the World Cancer Research (WCR) Project (16-1177) and the Fundacion Botin (Spain). R.S-V is a recipient of a doctoral scholarship from CONACYT-Mexico.S

    Degradation of cellular mRNA is a general early apoptosis-induced event

    Get PDF
    The fate of cellular mRNAs was analyzed in several cell lines of lymphoid origin, after induction of apoptosis by different mechanisms. Cytoplasmic mRNAs are specifically degraded as part of the early apoptotic response. This degradation is not species restricted and is independent of the cell line, the apoptotic stimulus, the intrinsic half-life of the mRNAs, and the transcriptional status of the gene (constitutive or inducible). mRNA degradation precedes DNA fragmentation and correlates with the appearance of phosphatidylserine in the outer cell membrane. In addition, apoptosis-induced mRNA degradation is an active process that can be dissected from other apoptotic hallmarks (degradation of annexin V, DNA, and poly(ADP-ribose) polymerase [PARP]), which suggests that apoptosis-induced mRNA degradation is controlled by a distinct signaling pathway. Furthermore, mRNA degradation also occurs in vivo, specifically during thymocyte apoptosis. Taken together, these data support the notion that degradation of mRNA is a general early apoptotic event that may become a new apoptotic hallmark.This work was supported in part by an EU-TMR Network grant (contract number: ERBFMRXCT980197), to J. A. G. S. M.S.R. is the recipient of a fellowship from the Comunidad de Madrid. The Department of Immunology and Oncology was founded and is supported by the Spanish Council for Scientific Research (CSIC) and by the Pharmacia Corporation.Peer Reviewe
    corecore