38 research outputs found

    Combining QTL mapping and transcriptomics to decipher the genetic architecture of phenolic compounds metabolism in the conifer white spruce

    Get PDF
    Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eightmetabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.National Sciences and Engineering Research Council of Canada, the Spruce-Up LSARP project with funding from Genome Canada and Genome Quebec and Genomics Research and Development Initiative of Canada.http://www.frontiersin.org/Plant_Scienceam2022Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Coping with Environmental Constraints: Geographically Divergent Adaptive Evolution and Germination Plasticity in the Transcontinental \u3cem\u3ePopulus tremuloides\u3c/em\u3e

    Get PDF
    Societal Impact Statement Syntheses clearly show that global warming is affecting ecosystems and biodiversity around the world. New methods and measures are needed to predict the climate resilience of plant species critical to ecosystem stability, to improve ecological management and to support habitat restoration and human well-being. Widespread keystone species such as aspen are important targets in the study of resilience to future climate conditions because they play a crucial role in maintaining various ecosystem functions and may contain genetic material with untapped adaptive potential. Here, we present a new framework in support of climate-resilient revegetation based on comprehensively understood patterns of genetic variation in aspen. Summary Elucidating species\u27 genetic makeup and seed germination plasticity is essential to inform tree conservation efforts in the face of climate change. Populus tremuloides Michx. (aspen) occurs across diverse landscapes and reaches from Alaska to central Mexico, thus representing an early-successional model for ecological genomics. Within drought-affected regions, aspen shows ploidy changes and/or shifts from sexual to clonal reproduction, and reduced diversity and dieback have already been observed. We genotyped over 1000 individuals, covering aspen\u27s entire range, for approximately 44,000 single-nucleotide polymorphisms (SNPs) to assess large-scale and fine-scale genetic structure, variability in reproductive type (sexual/clonal), polyploidy and genomic regions under selection. We developed and implemented a rapid and reliable analysis pipeline (FastPloidy) to assess the presence of polyploidy. To gain insights into plastic responses, we contrasted seed germination from western US and eastern Canadian natural populations under elevated temperature and water stress. Four major genetic clusters were identified range wide; a preponderance of triploids and clonemates was found within western and southern North American regions, respectively. Genomic regions involving approximately 1000 SNPs under selection were identified with association to temperature and precipitation variation. Under drought stress, western US genotypes exhibited significantly lower germination rates compared with those from eastern North America, a finding that was unrelated to differences in mutation load (ploidy). This study provided new insights into the adaptive evolution of a key indicator tree that provisions crucial ecosystem services across North America, but whose presence is steadily declining within its western distribution. We uncovered untapped adaptive potential across the species\u27 range which can form the basis for climate-resilient revegetation

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Data from: Fitness dynamics within a poplar hybrid zone: I. Prezygotic and postzygotic barriers impacting a native poplar hybrid stand.

    No full text
    Hybridization and introgression are pervasive evolutionary phenomena that provide insight to the selective forces that maintain species boundaries, permit gene flow and control the direction of evolutionary change. Poplar trees (Populus L.) are well known for their ability to form viable hybrids and maintain their distinct species boundaries despite this interspecific gene flow. We sought to quantify the hybridization dynamics and postzygotic fitness within a hybrid stand of balsam poplar (Populus balsamifera L.), eastern cottonwood (P. deltoides Marsh.) and their natural hybrids to gain insight to the barriers maintaining this stable hybrid zone. We observed asymmetrical hybrid formation with P. deltoides acting as the seed parent, but with subsequent introgression biased towards P. balsamifera. Native hybrids expressed fitness traits intermediate to the parental species and were not universally unfit. That said, native hybrid seedlings were absent from the seedling population, which may indicate additional selective pressures controlling their recruitment. It is imperative that we understand the selective forces maintaining this native hybrid zone in order to quantify the impact of exotic poplar hybrids on this native system

    Fitness dynamics within a poplar hybrid zone : II. Impact of exotic sex on native poplars in an urban jungle

    No full text
    Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large-scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P.balsamifera and P.deltoides spp. deltoides), native hybrids (P.deltoidesxP.balsamifera), and exotic hybrids (trees bearing Populus nigra and P.maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P.balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests

    Data from: Fitness dynamics within a poplar hybrid zone: II. Impact of exotic sex on native poplars in an urban jungle.

    No full text
    Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large-scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests

    Biomass and yield fitness traits

    No full text
    This file contains the biomass and yield traits measured for trees in this study. The biomass traits are: total catkin biomass, total seed biomass, 100 seed biomass, capsule biomass, stem biomass, and cotton biomass
    corecore