13 research outputs found

    Considerations in the determination of orientational order parameters from X-ray scattering experiments

    Get PDF
    An assessment of the data processing and analysis methods used to obtain the second- and fourth-rank orientational order parameters of liquid crystals from X-ray scattering experiments has been carried out, using experimental data from four extensively studied alkyl-cyanobiphenyls and calculated data generated from two general types of theoretical orientational distribution function. The application of a background subtraction and two different baseline correction methods to the scattering profiles is assessed, along with three different methods to analyse the processed data. The choice of baseline correction method is shown to have a significant effect: an offset to zero overestimates the order parameters from the experimental and calculated data sets, particularly for lower order parameters arising from broad distributions, whereas an offset to a value estimated from regions of low scattering intensity provides experimental values close to those reported from other experimental techniques. By contrast, the three different analysis methods are shown generally to result in relatively small absolute differences between the order parameters. We outline a straightforward general approach to experimental X-ray scattering data processing and analysis for uniaxial phases that results in order parameters that match well with those reported using other experimental techniques

    Rheological and flow birefringence studies of rod-shaped pigment nanoparticle dispersions

    Get PDF
    We study rheological and rheo-optical properties of suspensions of anisometric pigment particles in a non-polar fluid. Different rheological regimes from the dilute regime to an orientationally arrested gel state were characterized and compared with existing theoretical models. We demonstrate the intricate flow behaviour in a wide range of volume fractions. A unique combination of the optical properties of the particles results in a giant rheo-optical effect: an unprecedentedly large shear stress-induced birefringence was found in the isotropic range, exhibiting a sharp pre-transitional behaviour

    The influence of suspended nanoparticles on the Frederiks threshold of the nematic host

    No full text
    In recent years, several papers reported an enhanced dielectric anisotropy when ferroelectric particles were suspended in a liquid crystal. These results seem to be sensitive to the liquid crystal used and the preparation method of the ferroelectric particles. In this paper, we compare different preparation methods of suspended barium titanate in two different liquid crystal hosts. As a control experiment, we followed similar preparation steps with non-ferroelectric silica particles. In all cases, we found a broadening of the optical Frederiks transition but no change in the dielectric anisotropy. Raman spectroscopy has been used to investigate the loss of tetragonal structure in the barium titanate as a function of milling time and particle size. As reported in the earlier literature, barium titanate does not exhibit a well-defined tetragonal crystal structure below a certain particle size and loses its ferroelectric features. This provides a simple rationalization for the absence of any dielectric enhancement.</jats:p
    corecore