182 research outputs found

    Bayesian D-Optimal Choice Designs for Mixtures

    Get PDF
    __Abstract__ \n \nConsumer products and services can often be described as mixtures of ingredients. Examples are the mixture of ingredients in a cocktail and the mixture of different components of waiting time (e.g., in-vehicle and out-of-vehicle travel time) in a transportation setting. Choice experiments may help to determine how the respondents\' choice of a product or service is affected by the combination of ingredients. In such studies, individuals are confronted with sets of hypothetical products or services and they are asked to choose the most preferred product or service from each set. \n \nHowever, there are no studies on the optimal design of choice experiments involving mixtures. We propose a method for generating an optimal design for such choice experiments. To this end, we first introduce mixture models in the choice context and next present an algorithm to construct optimal experimental designs, assuming the multinomial logit model is used to analyze the choice data. To overcome the problem that the optimal designs depend on the unknown parameter values, we adopt a Bayesian D-optimal design approach. We also consider locally D-optimal designs and compare the performance of the resulting designs to those produced by a utility-neutral (UN) approach in which designs are based on the assumption that individuals are indifferent between all choice alternatives. We demonstrate that our designs are quite different and in general perform better than the UN designs

    Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events

    Get PDF
    Highlights • Very high rates of dissimilatory nitrate reduction to ammonium by Thioploca. • Non-steady state model predicts Thioploca survival on intracellular nitrate reservoir. • Ammonium release by Thioploca may be coupled to pelagic N loss by anammox. • Thioploca may contribute to anammox long after bottom water nitrate disappearance. • Model indicates that benthic foraminifera account for 90% of benthic N2 production. Abstract Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12oS from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modelling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large ‘hidden’ pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide to sulfate during ‘dissimilatory nitrate reduction to ammonium’ (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development

    Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    Get PDF
    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community

    Environmental Shaping of Sponge Associated Archaeal Communities

    Get PDF
    Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood.We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum.The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated archaeal communities, thereby improving their fitness in impacted environments

    Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss

    Get PDF
    Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype

    Empirical research on Waldorf education

    Get PDF
    Waldorf education began in 1919 with the first Waldorf School in Stuttgart and nowadays is widespread in many countries all over the world. Empirical research, however, has been rare until the early nineties and Waldorf education has not been discussed within educational science so far. This has changed during the last decades. This article reviews the results of surveys during the last 20 years and is mainly focused on German Waldorf Schools, because most investigations have been done in this field. Findings are reported with respect to the following central aspects of Waldorf education: the holistic and integrative approach, the self-governance in the organization of the Waldorf schools, the Waldorf curriculum, and the principle of class teachers from 1st to 8th grade. Furthermore, Waldorf education also provides its own unique teacher training. All of these aspects have been explored and evaluated from different points of view and with different methods. The results show strengths as well as weaknesses of Waldorf education in the daily practice in schools, which indicates the kinds of challenges Waldorf education will have to face in the upcoming decades. The authors themselves have contributed in several investigations to the field of Waldorf education
    corecore