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Abstract

Consumer products and services can often be described as mixtures of ingredients. Examples

are the mixture of ingredients in a cocktail and the mixture of different components of waiting

time (e.g., in-vehicle and out-of-vehicle travel time) in a transportation setting. Choice exper-

iments may help to determine how the respondents’ choice of a product or service is affected

by the combination of ingredients. In such studies, individuals are confronted with sets of

hypothetical products or services and they are asked to choose the most preferred product or

service from each set.

However, there are no studies on the optimal design of choice experiments involving mix-

tures. We propose a method for generating an optimal design for such choice experiments.

To this end, we first introduce mixture models in the choice context and next present an

algorithm to construct optimal experimental designs, assuming the multinomial logit model

is used to analyze the choice data. To overcome the problem that the optimal designs depend

on the unknown parameter values, we adopt a Bayesian D-optimal design approach. We also

consider locally D-optimal designs and compare the performance of the resulting designs to

those produced by a utility-neutral (UN) approach in which designs are based on the assump-

tion that individuals are indifferent between all choice alternatives. We demonstrate that our

designs are quite different and in general perform better than the UN designs.

Keywords: Bayesian design; Choice experiments; D-optimality; Experimental design; Mix-

ture coordinate-exchange algorithm; Mixture experiment; Multinomial logit model; Optimal

design

II



1 Introduction

One way to obtain information on consumer preferences is to employ choice experiments. In a

choice experiment, products or services are characterized by a combination of attribute levels

called a profile or an alternative. Each respondent then chooses one alternative from a group

of alternatives called a choice set. The respondents repeat this task for several other choice

sets presented to them. All choice sets that respondents face make up an experimental design

(Kessels et al., 2009; Rose and Bliemer, 2009). The preferences recorded in the course of a choice

experiment allow us to estimate the importance of each attribute and its levels. Such estimates are

crucial to design new successful products and services, to predict market shares and to determine

willingnesses to pay.

Alternative ways to quantify consumer preferences utilize rating and ranking approaches.

These approaches are, however, not very appealing if the number of alternatives that has to be

rated or ranked is large and when the differences between alternatives are small and subjective. In

such scenarios, many researchers in sensometrics, marketing, transportation, environmental and

health economics and psychology have resorted to pairwise comparisons (Agresti, 2002; David,

1963). In pairwise comparison studies, the respondents repeatedly evaluate pairs of alternatives,

which is cognitively less demanding and considered more reliable than rating or ranking large

sets of alternatives. Paired comparison studies can be viewed as choice experiments with choice

sets of two alternatives.

While the design of choice experiments involving categorical and (general) quantitative at-

tributes has received substantial attention in the literature, the design of choice experiments

where the attributes are proportions of ingredients in a mixture has not been studied at all. This

is surprising given the fact that many consumer products are in fact mixtures and given the fact

that Cornell (2002) describes many experiments where respondents have to rate or rank mixtures.

The examples in Cornell’s textbook deal with sports drinks (with various kinds of sweeteners as

ingredients), fish patties (with mullet, sheepshead and croaker as ingredients) and tobacco blends

(with flue-cured tobacco, burley, turkish blend and processed tobacco as ingredients), among

other things.

In this article, we show how to optimally design choice experiments involving mixtures. To this

end, we bring together the large body of work of the design and analysis of mixture experiments

in general and the work on the optimal design of discrete choice experiments, also known as

stated preference studies. The focus in this article is on applications in sensometrics. However,

our work might be useful for other application areas, too. For instance, in transportation, the

total traveling time can be viewed as a mixture of congested traveling time and free-flow traveling

time and the total traveling cost may be a mixture of fuel cost and tolls. In the RGB color model,

colors are represented as mixtures of the ingredients red, green and blue.

Mixture experiments have a rich history in agriculture and industry, which started with

the seminal papers of Scheffé (1958, 1963). These papers presented linear regression models

suitable for analyzing data from mixture experiments, as well as experimental designs that allowed

estimation of these models. The initial models treated the responses as quantitative variables and
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assumed that the responses depend only on the proportions of the mixture. However, extensions

of these models to cope with situations in which the total amount of the mixture also influences

the responses, or in which the ingredients are mixtures themselves have been presented as well.

An overview of the most commonly used models can be found in Cornell (2002) and Smith (2005).

In this article, we embed the Scheffé model in a multinomial logit framework to link the

choices made by respondents in a choice experiment to the mixture of ingredients. This is the

article’s first novel aspect. Next, we adapt the mixture coordinate-exchange algorithm of Piepel

et al. (2005) to compute optimal designs for choice experiments. This is the second novel aspect

of the article. Finally, to speed up the search for an optimal design, we use a high-quality starting

design as input to the mixture coordinate-exchange algorithm, based on a theoretical result on

minimum support designs in Goos and Donev (2007). This is the third innovative aspect of the

paper. We adopt a Bayesian approach and evaluate the Bayesian D-optimality criterion using a

computationally efficient quasi-Monte Carlo approach.

In the next section, we review the relevant literature on the design of choice experiments and on

mixture experiments. In Section 3, we discuss how we combine the mixture and the multinomial

logit models and we present the design criterion. We present our algorithm for obtaining the

optimal design involving mixtures in Section 4. We show a selection of our computational results

in Section 5, starting with locally optimal designs and ending with a Bayesian optimal design

for a choice experiment involving a cocktail. We pay special attention to the performance of

the newly developed designs relative to utility-neutral designs, a class of locally optimal choice

designs that has received much attention in the literature. Section 6 contains a conclusion.

2 Literature review

This article combines two streams of literature, namely, that on the optimal design of choice

experiments and that on the design of mixture experiments. In optimal design of experiments,

the information contained within an experiment is quantified by means of the information matrix

on the estimated model’s unknown parameters. An optimal design optimizes some function

of this information matrix. For instance, the design which maximizes the determinant of the

information matrix is called D-optimal. D-optimal designs are the most commonly used types

of optimal designs, both in the choice experiments literature and in the mixture experiments

literature. Therefore, we also focus on D-optimal designs. In this section, we first describe the

state of the art when it comes to designing choice experiments. Next, we turn our attention to

the literature on mixture experiments.

The first paper to discuss the D-optimal design of choice experiments was Huber and Zwe-

rina (1996), who assumed a multinomial logit model and showed that taking into account prior

knowledge on the respondents’ preferences had a beneficial impact on the quality of the experi-

mental design and the subsequent analysis. This is possible because the information matrix for

the multinomial logit model, the most commonly used model for analyzing choice data, depends

on the unknown model parameters. Therefore, any D-optimal design also depends on the param-

eter values. A key feature of the approach taken by Huber and Zwerina (1996) is that it uses
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a degenerate prior distribution, meaning that the optimal design is based on a single a-priori

chosen value of the model parameters. This approach, which is referred to as the locally optimal

design approach in the optimal experimental design literature, does not allow for any uncertainty

concerning the parameters’ values.

To overcome this weakness, Sándor and Wedel (2001) used a Bayesian optimal design ap-

proach involving a proper prior distribution, which summarizes the prior beliefs about the model

parameters, including the uncertainty. They showed that, even if the prior distribution is mis-

specified (or not well specified), more efficient experimental designs are obtained, due to the fact

that the prior uncertainty is taken into account. Since the appearance of Sándor and Wedel’s

work, the Bayesian optimal design approach has received much attention in the choice design

literature. Kessels et al. (2006, 2009) introduced better algorithms for constructing optimal de-

signs for the multinomial logit model and studied Bayesian A-, G- and V-optimal designs, in

addition to Bayesian D-optimal designs. The best-performing algorithm, in terms of speed and

solution quality, is the coordinate-exchange algorithm (Meyer and Nachtsheim, 1995) as proposed

by Kessels et al. (2009).

More recent work on the optimal design of choice experiments has focused on other application

areas such as transportation (Hensher and Rose, 2009), environmental economics (Vermeulen

et al., 2011), on fast approaches to evaluate the Bayesian optimality criteria (Bliemer et al., 2008;

Yu et al., 2010b), on models other than the multinomial logit model (Bliemer and Rose, 2010;

Bliemer et al., 2009a; Goos et al., 2010; Yu et al., 2009, 2011), or on design approaches that take

into account the complexity of choice tasks (Danthurebandara et al., 2011; Kessels et al., 2011a).

Some authors use a very specific locally optimal design approach to set up choice experiments,

i.e., they assume that all model parameters are zero. We refer to Burgess and Street (2005);

Grasshoff et al. (2003, 2004); Grossmann et al. (2006, 2009); and Street and Burgess (2007)

for D-optimal designs derived under that assumption. Under the assumption that the model

parameters are zero, the information matrix for the multinomial logit model is proportional to

the information matrix for a linear regression model, in case the experiment is run in blocks

(Kessels et al., 2011b). Blocked experiments are used whenever not all experimental tests can

be performed under homogeneous circumstances. The equivalence of the problem of finding

an optimal design for a blocked experiment and that of finding an optimal design for a choice

experiment under the assumption of zero model parameters implies that standard software for

the optimal design of experiments serves as a useful benchmark for the designs we propose in

this paper. Designs derived under the assumption that model parameters are zero are referred to

as utility-neutral designs, because, under that assumption, all alternatives have the same utility

and the respondents are indifferent between all alternatives.

Much research has also been done on the optimal design of mixture experiments. The research

focused on industrial and bioscience applications, where linear regression models are used and ex-

periments are usually completely randomized or blocked (Cornell, 2002; Smith, 2005). D-optimal

completely randomized designs for the most commonly used models, i.e., the linear, quadratic and

special cubic Scheffé models, in scenarios with simplex-shaped experimental regions have been

known for many years (Kiefer, 1961; Uranisi, 1964). For more general scenarios and other model
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types, Piepel et al. (2005) introduced a coordinate-exchange algorithm for mixture experiments.

Goos and Donev (2006, 2007) describe an algorithmic approach for designing blocked mixture

experiments. The latter work is particularly relevant here because it also produces utility-neutral

choice designs in case the alternatives are mixture of ingredients. We will use these D-optimal

blocked mixture experiments as benchmarks in this article.

In spite of all published work on the design of choice experiments and the design of mixture

experiments, the construction of optimal choice designs for mixtures is still an unexplored research

area. In this article, we fill this void in the literature.

3 Models and Design Criterion

In this section, we first describe general models for data from mixture experiments. Next, we

discuss these models in combination with the multinomial logit model. We then discuss the

D-optimality criterion which we use as the design selection criterion.

First, however, we need to introduce some notation. In a mixture choice experiment, a

product or service is represented by a combination of q ingredient proportions x1, x2, . . . , xq that

take values between zero and one, sum up to one and make up an alternative. A group of

alternatives presented to a respondent is called a choice set. The collection of all choice sets is

called a design. We denote the total number of alternatives in an experimental design by n, the

number of choice sets by S and the number of alternatives within a choice set by J .

3.1 Models for data from mixture experiments

In order to model choice as a function of mixtures of ingredients, a suitable model is required, i.e.,

a model that can handle proportions as explanatory variables. Such models have been developed

for situations involving continuous responses. As a result, they have only been used in the linear

regression context. The mixture constraint

q∑
i=1

xi = x1 + x2 + · · ·+ xq = 1 (1)

has a substantial impact on the models that can be considered. The first major consequence

of this mixture constraint is that a linear regression model for mixture data cannot contain an

intercept. Otherwise, the model’s parameters cannot be estimated uniquely. Moreover, the cross-

products xixj (generally required for quantifying interaction effects) and the squares x2i (generally

required for quantifying quadratic effects) cannot be included simultaneously in the model, as

this also leads to perfect collinearity. To see this, note that

x2i = xi(1−
q∑

j=1
j 6=i

xj) = xi −
q∑

j=1
j 6=i

xixj ,
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for every proportion xi. Thus, the square of a proportion is a linear combination of that proportion

and its cross-products with all other proportions composing the mixture. As a result, the mixture

constraint naturally leads to the family of models proposed by Scheffé (1958, 1963). The first-

order Scheffé model for a continuous dependent variable Y is given by

Y =

q∑
i=1

βixi + ε, (2)

whereas the second-order Scheffé model is given by

Y =

q∑
i=1

βixi +

q−1∑
i=1

q∑
j=i+1

βijxixj + ε. (3)

The so-called special-cubic model can be written as

Y =

q∑
i=1

βixi +

q−1∑
i=1

q∑
j=i+1

βijxixj +

q−2∑
i=1

q−1∑
j=i+1

q∑
k=j+1

βijkxixjxk + ε. (4)

The interpretation of the coefficient βi in Equation (2) is the expected response if xi is 100%, i.e.,

if a product consists of ingredient i only. We cannot interpret it as the partial effect of ingredient

i, since changing the proportion xi requires at least one other proportion to be changed as well.

Otherwise, the mixture constraint in Equation (1) is violated. It is, therefore, relatively difficult

to interpret parameters in the Scheffé models.

If we expect interaction effects like synergism (interaction of ingredients such that the total

effect is greater than the sum of the individual effects) or antagonism (interaction of ingredients

such that the total effect is smaller than the sum of the individual effects), we should use the

second-order or special-cubic model in Equation (3) or (4). As the number of terms in the

second-order or special-cubic Scheffé models increases rapidly with the number of ingredients q,

estimating them may require a large number of observations.

In a mixture experiment, the experimental region is the set of all possible combinations of

the proportions x1, x2, . . . , xq that satisfy the mixture constraint in Equation (1). That region

is a (q − 1)-dimensional regular simplex, which is an equilateral triangle when q = 3. If we

impose constraints on the ingredient proportions, such as lower and/or upper bounds, we obtain

a constrained experimental region. When only lower bounds are used, the experimental region

remains simplex-shaped and it is in this case common to redefine the proportions in terms of

so-called L-pseudocomponents, each of which again takes values on the interval (0, 1) and the

sum of which is one. If we denote the lower bound for ingredient i as Li, where 0 ≤ Li ≤ xi, then

the ith pseudocomponent x′i is defined as

x′i =
xi − Li

1− L
,

where L =
∑q

i=1 Li < 1. The original reason for using L-pseudocomponents is to enhance the

numerical stability in the data analysis. We use these pseudocomponents to be able to generate
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optimal designs subject to lower bound restrictions on the proportions.

3.2 Multinomial logit model

To capture an individual’s preferences and to model the choices made in mixture choice experi-

ments, we build on the multinomial logit (MNL) model. The model is based on random utility

theory and expresses the utility of alternative j in choice set s as a function of the observed

alternative specific characteristics plus an error term:

Ujs = f ′(xjs)β + εjs, (5)

where f ′(xjs) represents the model expansion of the characteristics of alternative j in choice set

s and β is the corresponding parameter vector. Note that, because the same parameter vector

β is attached to every respondent in the MNL model, the model is suitable whenever people’s

preferences are homogeneous across the population.

In the mixture context, the alternatives’ characteristics are ingredient proportions. Therefore,

the model expansions we use in this paper are based on, but not identical to, the basic Scheffé

models in Equations (2) - (4). When the Scheffé mixture models are directly embedded in a

MNL framework, not all parameters can be estimated independently. For the model parameters

to be identified, we have to drop one of the q proportions xi from the model. Which proportion

is dropped is arbitrary. We choose to drop the linear term corresponding to the last ingredient

proportion xq, which comes down to substituting 1−x1− . . . −xq−1 for xq and next dropping the

resulting constant term. Assuming, for instance, that one starts with the special cubic model,

the utility for the jth alternative in choice set s then becomes

Ujs =

q−1∑
i=1

(βi − βq)xijs +

q−1∑
i=1

q∑
k=i+1

βikxijsxkjs +

q−2∑
i=1

q−1∑
k=i+1

q∑
l=k+1

βiklxijsxkjsxljs + εjs,

=

q−1∑
i=1

β∗i xijs +

q−1∑
i=1

q∑
k=i+1

βikxijsxkjs +

q−2∑
i=1

q−1∑
k=i+1

q∑
l=k+1

βiklxijsxkjsxljs + εjs,

where β∗i = βi − βq.
In each choice set, the respondent chooses the alternative that has the largest utility. The

probability that a respondent chooses alternative j in choice set s is, therefore,

pjs = P{Ujs > max{U1s, . . . , Uj−1,s, Uj+1,s, . . . , UJs}}.

In the MNL model, the stochastic components εjs are assumed to be mutually independent and

to follow the so-called log Weibull distribution (also known as type-I extreme value distribution).

Their cumulative distribution function is given by

F (εjs) = exp(− exp(−σεjs)),

where σ is a positive scale parameter. The probability that a respondent chooses alternative j in
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choice set s can now be written as

pjs =
exp(σf ′(xjs)β)
J∑

t=1
exp(σf ′(xts)β)

. (6)

It is clear from Equation (6) that the scale parameter σ and the vector β cannot be estimated

independently. In some sense, the parameter σ defines the scale of the parameters contained

within β. The larger the value of σ for a given β, the larger the degree of certainty with which

we can predict the choices respondents make. The smaller the value of σ, the more randomness

is present in the respondents’ choices. As the parameter σ is not identified, we set it to one as

is customary in the literature. In Section 5.2, however, we explicitly consider the impact of the

scale of the β vector. This is equivalent to studying the impact of σ.

3.3 Design optimality criterion

The goal when constructing an optimal experimental design is to obtain precisely estimated

parameter values. This goal is formalized in an objective function. In the optimal experimental

design literature, this objective function is called the design optimality criterion. Different design

optimality criteria exist (for instance, the D-, A-, G- and V-optimality criteria), all of which are

functions of the Fisher information matrix on the parameters (Atkinson et al., 2007). We use the

D-optimality criterion, which is the most commonly used one in the literature on the design of

mixture experiments and in the literature on the design of choice experiments. Designs that are

optimal with respect to this criterion in general also perform well in terms of other criteria. A

D-optimal design maximizes the determinant of the information matrix, or minimizes its inverse,

the determinant of the variance-covariance matrix of the parameter estimator.

For the MNL model, the total information matrix I(X,β) is obtained as the sum of the

information matrices of the S choice sets, Is(Xs,β) and given by

I(X,β) =
S∑

s=1

Is(Xs,β) =
S∑

s=1

X′s(Ps − psp
′
s)Xs, (7)

with Xs = [f(xjs)]
′
j=1,...,J , X = [X′s]

′
s=1,...,S = [f(xjs)]

′
j=1,...,J ;s=1,...,S , ps = (p1s, . . . , pJs)

′ and

Ps = diag(p1s, . . . , pJs). From Equation (7), it is clear that the information matrix depends on

the choice probabilities pjs and, therefore, also on the unknown parameter vector β. As a result,

in order to optimize the D-optimality criterion value when constructing an optimal design, we

need to assume (prior) values for the model parameters.

Generally, in optimal experimental design, a prior distribution is specified for the unknown

parameters and a design is sought that maximizes the D-optimality criterion averaged over that

prior distribution. The resulting design is referred to as the Bayesian optimal experimental design

(Atkinson et al., 2007). We denote the prior distribution for the parameter vector β by π(β) and

use the following Bayesian D-optimality criterion for mixture choice experiments for estimating
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the MNL model:

D = log
(∫

Rp
{det(I−1(X,β))}1/pπ(β)dβ

)
, (8)

where p is the number of parameters in β. The exponent 1/p makes the D-criterion comparable

across models with different numbers of parameters. Note that the log transformation has no

impact on the optimal design. The Bayesian D-optimality criterion was introduced in the context

of choice experiments by Sándor and Wedel (2001) and it has been used by many other authors

studying the D-optimal design of choice experiments. This criterion corresponds to Criterion II

in Atkinson et al. (2007) and is appropriate when the variance of the parameter estimates is of

the highest importance.

Through the prior distribution, we can express different beliefs about the parameters as well as

our uncertainty concerning these prior beliefs. It is possible to use a degenerate prior distribution

putting all weight on a single value for the parameter vector, say β̃. The Bayesian D-optimality

criterion then simplifies to the local D-optimal design criterion

log(det(I−1(X, β̃))1/p). (9)

When β̃ = 0p, the locally D-optimal design is called the utility-neutral design. We discuss the

choice of a proper prior distribution in Section 4.3.

It is interesting to note that there may be more than one D-optimal design in a given scenario.

This is especially true in the utility-neutral case. However, designs that are equivalent in the

utility-neutral case are generally not equivalent when evaluated using a nonzero prior parameter

vector β̃ or using a non-degenerate prior distribution π(β).

4 Design Construction Algorithm

In this section, we present an algorithm that minimizes the D-optimality criterion value in Equa-

tion (8) through a local search procedure. The algorithm involves two main steps: (1) the

generation of a starting design and (2) the use of a mixture coordinate-exchange algorithm to im-

prove the starting design, proportion by proportion. This algorithm is a heuristic and, therefore,

there is no guarantee that it will produce the globally Bayesian D-optimal design. To increase

the likelihood of finding the global optimum, we repeat the two steps a number of times. This

approach is common in algorithms for constructing optimal experimental designs (Atkinson et al.,

2007).

Our algorithmic approach differs from the mixture coordinate-exchange algorithm of Piepel

et al. (2005) in two important ways. First, we use a better procedure for generating a starting

design, which takes into account the fact that a design for a mixture choice experiment requires

the mixtures to appear in groups. Second, we have adapted the algorithm so that it optimizes

the Bayesian D-optimality criterion for the MNL model.
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4.1 Generating a starting design

Various implementations of the coordinate-exchange algorithm for constructing optimal experi-

mental designs, including the mixture coordinate-exchange algorithm of Piepel et al. (2005) for

linear regression models, use completely random starting designs. Other algorithms for con-

structing D-optimal designs generate starting designs partly at random and partly using a greedy

heuristic (Atkinson and Donev, 1989). The random part ensures that the starting designs are

different. The greedy heuristic ensures that the starting design is reasonably good, which speeds

up the search for the optimal design considerably.

To obtain a starting design, we use similar ideas. We randomly generate starting designs

that are already optimal in some sense. More specifically, we use a method introduced by Goos

and Donev (2007) to generate D-optimal minimum support mixture designs in blocks. Due to

the equivalence of the problem of finding a D-optimal design for a blocked experiment and the

D-optimal choice design problem in case the parameters are zero, the resulting starting designs

are automatically D-optimal utility-neutral choice designs within the class of minimum support

designs. In the context of mixture experiments, a minimum support design is a design which has

as many distinct mixtures as there are parameters in the model.

Since our starting design is D-optimal for a problem that approximates the Bayesian D-

optimal mixture choice design problem, we can trust that the starting design is of high-quality.

Our computational experiments showed that using these minimum support designs rather than

completely random starting designs substantially decreases the required computation time of the

algorithm1.

The approach we take to construct the starting design involving S choice sets of J mixtures

works as follows (Goos and Donev, 2007):

� Choose the p distinct mixtures which are D-optimal for the Scheffé model under consider-

ation in case a completely randomized experiment would be performed. For the first-order

Scheffé model, the required mixtures correspond to the q vertices of the simplex. For the

second-order model, the q vertices and q(q − 1)/2 edge midpoints are required. For the

special-cubic model, the same mixtures are required as for the second-order model, plus all

q(q − 1)(q − 2)/3 mixtures of three ingredients, each with proportion 1/3.

� Replicate the p distinct mixtures as evenly as possible, so that the total number of mixtures

is n = SJ . Each of the mixtures then appears int(n/p) or int(n/p) + 1 times in the design.

When p is not a divisor of n, the mixtures that are replicated most frequently are randomly

chosen. The resulting design is a D-optimal completely randomized design for the model

under consideration.

� Randomly allocate the n mixtures to the S choice sets, subject to the constraint that a

given mixture should not appear more than once in any choice set. The resulting design is

now D-optimal in the class of minimum support designs for the model under consideration

in case there are S blocks of size J .
1To generate random starting designs uniformly on the simplex, the proportions can be drawn from a standard

exponential distribution and then normalized.
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It is clear that the procedure to create the starting design involves a large number of random

components. This procedure is, therefore, capable of producing a large number of different

starting designs.

4.2 Improving the starting design

To improve the starting design, we use a mixture coordinate-exchange algorithm (Meyer and

Nachtsheim, 1995; Piepel et al., 2005). The algorithm starts by optimizing the first ingredi-

ent proportion of the first alternative in the first choice set of the starting design using the

method of Brent (1973). Brent’s method is a one-dimensional optimization algorithm, based

on a combination of golden section search and successive parabolic interpolations. The mixture

coordinate-exchange algorithm then successively optimizes the second ingredient proportion of the

first alternative in the first choice set, the third ingredient proportion, . . . , and the qth ingredient

proportion. This process is repeated for each alternative in each choice set of the design. When-

ever at least one proportion has been improved in a complete pass of the coordinate-exchange

algorithm through the entire design, the optimization procedure is restarted from the first ingre-

dient proportion. The algorithm stops when no improvements have been performed in a complete

pass through all the proportions.

This mixture coordinate-exchange algorithm differs in a substantial way from the original

coordinate-exchange algorithm described in Meyer and Nachtsheim (1995). In our case, the

proportions cannot be changed independently: if one proportion changes, then at least one other

proportion has to change as well. Otherwise, the mixture constraint would be violated. To

deal with this complication, we adopt the approach by Piepel et al. (2005) and make sure that,

when we optimize a proportion xi, the pairwise ratios of the other ingredient proportions remain

fixed. This approach is known as exchanges along Cox-effect directions (Cornell, 2002; Piepel,

1982). The general expression for recomputing the proportions x1, . . . , xi−1, xi+1, . . . , xq after a

proportion xi is changed to xi + ∆ is

xj −
∆xj

1− xi
.

In case xi = 1 before the change, we set the proportions x1, . . . , xi−1, xi+1, . . . , xq to ∆/(q − 1).

4.3 Prior Distribution

Specifying a prior distribution for the parameters in the identified utility model, involving the

differences β1 − βq, . . . , βq−1 − βq, is not straightforward. We recommend first specifying a prior

distribution for the full (unidentified) Scheffé model (as in Equations (2)-(4)) and transforming

it into a prior for the identified model. This also makes the resulting prior specification invariant

to the chosen reference proportion.

As a first example, consider the parameter vector (β1, β2, . . . , βq)
′ for the first-order Scheffé

model and assume a normal prior distribution with mean vector β0 and variance-covariance ma-

trix κIq, with β0 = (β01, β02, . . . , β0q)
′ and Iq the identity matrix of dimension q. This distribution
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translates into the prior distribution
β1 − βq
β2 − βq

...

βq−1 − βq

 ∼ N



β01 − β0q
β02 − β0q

...

β0,q−1 − β0q

 ,


2κ κ κ . . . κ

κ 2κ κ . . . κ
...

κ κ κ . . . 2κ


 (10)

for the differences (β1−βq, β2−βq, . . . , βq−1−βq)′. Note that a very specific correlation structure

results from this transformation. Applying the same approach to a special-cubic model for three

ingredients, we obtain

β1 − β3
β2 − β3
β12

β13

β23

β123


∼ N





β01 − β03
β02 − β03
β0,12

β0,13

β0,23

β0,123


,



2κ κ 0 0 0 0

κ 2κ 0 0 0 0

0 0 κ 0 0 0

0 0 0 κ 0 0

0 0 0 0 κ 0

0 0 0 0 0 κ




. (11)

In this paper, we either start from independent normal prior distributions for the parameters

of the full Scheffé model, or base the distribution on prior research. There are also other ways

to obtain sensible prior distributions. Huber and Zwerina (1996) suggest using a small pilot test

to obtain a-priori estimates of the model parameters. Sándor and Wedel (2001) use managers’

beliefs as a starting point for constructing a prior distribution.

4.4 Computational issues

The most computationally intensive part in our work is the evaluation of the p-dimensional

integral in Equation (8). As there is no analytical expression for it, that integral has to be

evaluated numerically for each design considered in the course of our mixture coordinate-exchange

algorithm. Since the number of designs we need to consider during the optimization procedure is

large, it is of crucial importance to use a computationally efficient numerical integration approach.

A simple but computationally demanding approach would be to use pseudo Monte-Carlo

sampling. In that approach, R pseudo random draws for β, say β(1), . . . ,β(R), are taken from

the prior distribution and the Bayesian D-optimality criterion is approximated as

D = log
( 1

R

R∑
i=1

{det(I−1(X,β(i))}1/p
)
. (12)

The required number of determinant evaluations in the numerical integration increases linearly

with the number of draws, R. A weakness of the pseudo Monte-Carlo approach is that draws are

made independently. This may result in a large variability of the integral approximation and a

slow convergence to the true value of the integral as R increases. The use of pseudo Monte-Carlo

sampling, therefore, requires a large value for R (Bliemer et al., 2009b; Yu et al., 2010a). This
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results in long computation times for the mixture coordinate-exchange algorithm.

In our work, we use a systematic sample from the prior distribution, based on Halton se-

quences (Halton, 1960). The fact that the resulting draws βi are systematically spread over the

domain, improves the accuracy of the integral approximation. This means that fewer draws and,

hence, much shorter computing times are required to evaluate the Bayesian D-optimality criterion

(Bliemer et al., 2009b; Yu et al., 2010a).

In order to speed up the computations even further, we use the Cholesky decomposition

to calculate the determinant of the information matrix. This is faster by a factor of two for

symmetric, positive definite matrices, such as the information matrix.

5 Illustrations

In this section, we provide illustrations of the designs that our algorithm produces. First, we

consider utility-neutral designs, i.e., setting β = 0p. We demonstrate that, in this case, the

performance of our algorithm matches that of the mixture coordinate-exchange algorithm of

Piepel et al. (2005), as implemented in the software package JMP10. The excellent performance

of our algorithm in this case provides confidence that the algorithm is also capable of finding good

designs in other, more complex, cases that cannot be tackled using standard software. Next, we

consider locally optimal designs. We obtain designs for fixed, non-zero, values of β and show that

these designs outperform the utility-neutral design when both designs are evaluated at β. We

also investigate the impact of the value of β, where we separately study the impact of changing

the shape of the implied utility function and the impact of changing the implied range of the

utilities. Finally, we study Bayesian D-optimal designs. Such designs account for uncertainty in

β through the use of a normal prior distribution with a non-zero variance-covariance matrix.

While our algorithm is capable of handling any number of ingredients and any kind of Scheffé

model, in this section, we only consider experimental designs for the special-cubic model for three

ingredients with 14 alternatives in seven choice sets of size two. This allows for a straightforward

comparison of the designs under different scenarios. All reported designs are obtained using

1,000 different starting designs. For the Bayesian D-optimal design, we used 128 Halton draws

to approximate the Bayesian D-optimality criterion.

5.1 Utility-neutral designs

First, we construct choice designs assuming that β = 0p. We do so for two reasons. First, as

pointed out in Section 2, several authors in the choice design literature focus on this scenario.

Second, studying the case where β = 0p allows us to compare the performance of our algorithm

to that of commercial software.

In Figure 1, we show the utility-neutral designs generated both by our algorithm and by

JMP10 using a ternary plot. We provide the exact ingredient proportions for each of the designs

in Tables A.1 and A.2 in Appendix A. The vertices of the triangle in Figure 1 correspond to the

three alternatives where one proportion equals 100%. The interior points represent mixtures in

which none of the three ingredients is absent, i.e., where x1, x2 and x3 are all strictly positive.
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The centroid corresponds to the mixture with equal proportions for each of the three ingredients

(Cornell, 2002). Each symbol in the ternary plot corresponds to a different choice set. As certain

mixtures in Figure 1 appear in more than one choice set, symbols may overlap. In total, there are

seven symbols in Figure 1, each of which occurs twice, as we consider designs with seven choice

sets of two alternatives.
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Figure 1: Utility-neutral designs

The locations of the mixtures in the ternary plots for the two designs in Figure 1 are re-

markably similar, as is the pairwise grouping. The D-optimality criterion value equals 2.9397

for the design constructed using the algorithm presented in Section 4 and 2.9410 for the design

constructed using JMP10. Thus, our design performs slightly better and we conclude that our

algorithm works well in this scenario. Evaluating the performance of our algorithm in several

other utility-neutral scenarios yields similar results.

In case β = 0p, then, for any given design, it is possible to construct q! different, but equivalent

designs by permuting the labels of all ingredients. For instance, for the design problem in Figure 1,

it is possible to construct 3! = 6 different designs, all of which have the same D-optimality criterion

value when β = 0p, by permuting the labels x1, x2 and x3. In the next sections, we will, however,

see that the q! different utility-neutral designs may have quite different performances in case

β 6= 0p.

5.2 Locally optimal design approach

Using parameter values equal to zero might seem attractive, as it is convenient and helps to reduce

the computation time required to generate an optimal design. However, the corresponding prefer-

ence assumption is unrealistic, since it is hard to believe that respondents have equal preferences

over alternatives. For instance, consumers generally prefer low prices to high ones and certain

brands are consistently preferred over others. In a mixture context, not all ingredients might be

equally important to the respondents. For example, if we consider a fruit punch consisting of
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watermelon, pineapple and orange juice concentrates, respondents might prefer mixtures which

contain more of the orange juice concentrate and less of the other two ingredients.

In this section, we demonstrate how we use this kind of consumer preference information

to construct locally optimal experimental designs assuming a particular value for β. We focus

on locally optimal experimental designs and investigate the impact of changing the shape and

range of the implied utility function. The shape of the utility function determines the relative

importance that respondents attribute to certain ingredients, or combinations of ingredients,

comprising a mixture. The range influences the magnitude of the odds ratios within a choice set.

5.2.1 A first example

In order to use realistic parameter values, we analyzed the data from a three-ingredient mixture

experiment described in Cornell (2002). The experiment was performed to determine whether

an artificial sweetener could be used in a popular athletic-sports drink. The three sweeteners

considered are glycine (x1), saccharin (x2) and an enhancer (x3). The response of interest was

“intensity of sweetness aftertaste”. The special-cubic model estimated based on rank-order data

from 380 individuals is given by

ŷ = 11.25x1 + 5.54x2 + 3.73x3 + 26.93x1x2 + 20.52x1x3 + 28.44x2x3 − 180.68x1x2x3.

We interpret the intensity of sweetness aftertaste as being proportional to the utility and use the

above estimates as input for the parameters in the MNL choice model. In the utility model, we

need to account for identification restrictions, therefore, the assumed utility model becomes

û = (11.25− 3.73)x1 + (5.54− 3.73)x2 + 26.93x1x2 + 20.52x1x3 + 28.44x2x3 − 180.68x1x2x3,

= 7.52x1 + 1.81x2 + 26.93x1x2 + 20.52x1x3 + 28.44x2x3 − 180.68x1x2x3.

We refer to the parameters in this model as β̃.

The locally optimal design for this parameter setting is shown in Figure 2a and given in

Table A.3 of Appendix A. For comparison, we present the corresponding utility-neutral design

in Figure 2b. The contour lines in the plot represent the utility function, where the color roughly

represents the utility value for a particular mixture.

A key feature of the design presented in Figure 2a is that, within a choice set, the two

alternatives have similar utilities. Hence, in the optimal choice design we ask respondents to

compare mixtures that have similar a-priori utilities. The locally optimal design is, therefore,

approximately utility balanced. Figure 2b clearly shows that the utility-neutral design involves

only one choice set where mixtures have similar utilities. The utility-neutral design is, therefore,

certainly not utility balanced.

5.2.2 Changing the scale of utility

For the parameter values β̃, the utility ranges from 0 to 11.70, which results in a relatively ex-

treme odds ratio of exp(11.70)/exp(0) > 1.2 × 105 for choosing the best available alternative
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(a) Locally optimal design

���

���

���

���

���

���

���

���

���

���

���

���

���

���
���

���

���

���

���

���

���

���

���

���

���

���

���

6DFFKDULQ

*O\FLQH

(
QK

DQ
FH
U

&RQWRXU
�

���
�

���
�

(b) Utility-neutral design

Figure 2: Locally optimal design for parameter vector β̃ versus the utility-neutral design for the
intensity of sweetness aftertaste example

compared to the worst. It is interesting to investigate the impact of reducing this odds ratio,

where we make sure not to change the shape of the utility function. We first rescale the pa-

rameter values such that the maximum odds ratio decreases to 6. Next, we further rescale the

parameters to make the maximum odds ratio decrease to 3.8. In these two new scenarios, the

utility values are in the interval [0, 1.79] and [0, 1.33], respectively. The rescaled parameters are

β1 = (1.15, 0.28, 4.12, 3.14, 4.36,−27.67)′ and β2 = (0.86, 0.21, 3.07, 2.34, 3.24,−20.59)′.

We graphically show the locally optimal designs for these two scenarios in Figure 3 and we

provide the designs in tabular format in Tables A.4 and A.5 in Appendix A. Note that when the

utility range narrows, we approach the utility-neutral case, for which the utility range is [0, 0]

and the parameter vector equals the zero vector.

Figure 3 has contour lines with the same shape as those in Figure 2, but, as the legend shows,

the utility values corresponding to the contours differ markedly. The designs in Figure 3a and 3b

differ substantially from the one in Figure 2a, showing that the a-priori information provided has

a substantial impact on the design. As expected, the design constructed for the narrowest utility

range, i.e., the design in Figure 3b is most similar to the utility-neutral design in Figure 2b.

5.2.3 Comparison to all utility-neutral designs in terms of D-efficiency

The optimal solution to the utility-neutral design problem is not unique. Under the utility-

neutral assumption, all column permutations of any given utility-neutral design matrix result in

a design with the same D-value as the original. In Appendix B, we list all permutations of the

utility-neutral design in Figure 1a.

However, the permuted designs are not equivalent when evaluated under a non-zero parameter

vector. Since the choice of the permutation to eventually use in an experiment is arbitrary, all

permutations should be considered when comparing the locally optimal design approach to the
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(b) Odds of 3.8

Figure 3: Locally optimal experimental designs for rescaled parameter vectors β1 and β2 in the
intensity of sweetness aftertaste example

utility-neutral approach. For each non-zero parameter vector we considered above, i.e., β̃, β1 and

β2, we identify the best possible utility-neutral design (having the smallest D-optimality criterion

value) as well as the worst utility-neutral design (having the largest D-optimality criterion value).

For each of the three parameter vectors, the best utility-neutral design turns out to be second

permutation listed in Table B.2. For prior parameter vector β̃, the third permutation (see

Table B.3) is worst, whereas, for β1 and β2, it is the first permutation (Table B.1) which performs

worst.

The D-optimality criterion values for the locally optimal designs and the best and worst

utility-neutral designs are given in Table 1. The difference in D-optimality values is largest for

the original parameter vector β̃. In order to quantify the performance of the best and worst

utility-neutral designs relative to the locally optimal design, we compute the local D-efficiencies

(det(I(Xbest,β))/ det(I(Xloc.opt.,β)))−1/p and (det(I(Xworst,β))/ det(I(Xloc.opt.,β)))−1/p, for β

equal to β̃,β1, or β2, where Xbest, Xworst and Xloc.opt. represent the design matrices of the best

and worst utility-neutral design and of the locally optimal design. A D-efficiency of, say, 50% of

one design relative to another means that the former design requires twice as many respondents

as the latter to achieve the same precision of parameter estimates. The percentage difference in

the required number of respondents for the former design is, thus, 100%. In Table 2, we show the

D-efficiencies for the best and worst utility-neutral designs relative to the locally optimal designs

for each of the parameter vectors.

Table 1 shows that the locally optimal designs perform better in all three scenarios. However,

the difference in performance decreases as the prior parameter vector approaches the zero vector.

For parameter vector β̃, the locally optimal design is nearly 20% more efficient than the best

and 33% more efficient than the worst utility-neutral design. The difference in efficiency drops

to 0.02% and 0.5% for the best and worst utility-neutral designs, respectively, for β2, i.e., for the

parameter vector closest to zero. In any case, our results show that the conclusion of Huber and
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β̃ β1 β2

Locally optimal 3.5380 3.0474 3.0132
Best utility-neutral 4.9880 3.0704 3.0147

Worst utility-neutral 6.3447 3.1284 3.0482

Table 1: D-optimality criterion values for locally optimal and utility-neutral designs for three
different prior parameter vectors

β̃ β1 β2

Best utility-neutral 81.29% 99.67% 99.98%
Worst utility-neutral 66.97% 98.85% 99.50%

Table 2: D-efficiencies for utility-neutral designs relative to the locally optimal design for three
different prior parameter vectors

Zwerina (1996) that non-zero priors can be used to generate statistically more efficient choice

designs extends from choice experiments involving categorical attributes to choice experiments

involving mixtures.

5.2.4 Comparison to all utility-neutral designs in terms of utility balance

All locally optimal designs we constructed are approximately utility balanced. The alternatives

within any given choice set have similar utilities and, hence, similar choice probabilities. This is

not always the case for the utility-neutral designs. Formally, for a utility-balanced design with

choice sets of two alternatives, the product of the two choice probabilities in any choice set equals

0.25. If the alternatives differ in utility, this product is smaller than 0.25.

Consider again the three locally optimal designs, constructed assuming the parameter vectors

β̃, β1 and β2, along with the best and worst utility-neutral designs. For each of these designs,

we provide in Table 3 the minimum, mean and maximum values of the product of the choice

probabilities across choice sets. The table shows that the locally optimal design always scores

very well in terms of utility balance, whereas the utility-neutral designs exhibit a complete lack

of utility balance in various choice sets under β̃. Each of the possible utility-neutral designs has

at least one choice set for which the product of the choice probabilities is zero in that case and

the average of the choice probabilities’ product is at most 0.08. Under the parameter vectors β1

and β2 (which are closer to the zero vector), the lack of utility balance is less extreme for the

utility-neutral designs. Nevertheless, under β1, the utility-neutral designs have choice sets for

which the choice probabilities’ product equals 0.15, in which case the choice probabilities are as

unequal as 0.2 and 0.8. None of the three locally optimal designs results in choice probabilities

that differ to this extent.

5.2.5 Changing the shape of the utility function

We next study the impact of changing the shape of the utility function, keeping the range or

scale of the utilities constant. We start with the parameter vector β1, make the first param-

17



β̃ β1 β2

Locally optimal 0.17 0.22 0.18
Min Best utility-neutral 0.00 0.15 0.18

Worst utility-neutral 0.00 0.15 0.19

Locally optimal 0.21 0.23 0.23
Mean Best utility-neutral 0.08 0.22 0.23

Worst utility-neutral 0.04 0.21 0.22

Locally optimal 0.24 0.25 0.25
Max Best utility-neutral 0.25 0.25 0.25

Worst utility-neutral 0.25 0.25 0.25

Table 3: Measures of utility balance for the locally optimal and utility-neutral designs

eter (corresponding to the first ingredient) ten times as large as the second parameter (cor-

responding to the second ingredient) and rescale the resulting parameter vector to ensure the

range of the utility function remains unchanged. The resulting new parameter vector is then

βnew
1 = (1.69, 0.17, 2.52, 1.92, 2.66,−16.90)′ and the odds for choosing the best alternative instead

of the worst are still equal to 6. The corresponding locally optimal design and the contour lines

corresponding to the new utility function are shown in Figure 4. The design is given in tabular

format in Table A.6 in Appendix A.
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Figure 4: Locally optimal design for a different shape of the utility function, corresponding to
parameter vector βnew

1

It is interesting to investigate the performance of the new design in Figure 4 in case the true

model parameter vector differs from βnew
1 . To this end, we compute its D-efficiency relative to

the locally optimal designs in Figures 2a, 3a and 3b. Since the D-optimality criterion values of

the new design under β̃, β1 and β2 equal 5.3156, 3.0883 and 3.0391, respectively, the relative D-

efficiencies equal 77.57%, 99.42% and 99.63%. We observe that misspecifying the prior parameter

vector can have a drastic impact on the performance of the design.

To reduce the dependence of the design quality on the set value of β, we advocate using a
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non-degenerate prior distribution which incorporates the uncertainty about the unknown model

parameters. The performance of the resulting designs will be more stable across different values

of the model parameter vector. We consider such designs next.

5.3 Bayesian approach

Bayesian D-optimal designs, constructed using a proper prior distribution that incorporates the

a-priori uncertainty about the model parameter vector, are known to perform well under a broad

range of scenarios. In this section, we first investigate the impact of the uncertainty, using

independent prior distributions for the parameters. Next, we show how to deal with a multivariate

prior distribution involving correlations between the different parameters. We do so using a

practical example taken from the literature.

5.3.1 The impact of the parameter uncertainty

As prior distribution, we choose a normal distribution with prior mean equal to β2 and the

variance-covariance matrix as given in Equation (11). The a-priori uncertainty is controlled by

the parameter κ. We use κ values of 0.5, 5, 10 and 30 in this section. We show the Bayesian D-

optimal designs corresponding to the different κ values in Figure 5 and provide their design points

in tabular format in Tables A.7 to A.10 in Appendix A. The contours in Figure 5 correspond

to the mean parameter vector (β2). When the uncertainty increases, the design becomes less

symmetric and the design points tend to be spread over the entire simplex. We also find that the

design for κ = 0.5 is almost identical to the locally optimal design in Figure 3b, which implicitly

assumes a κ value of zero.

A remarkable feature of the Bayesian D-optimal designs is that, for larger values of κ, the

mixtures within a choice set tend to be close to each other. To investigate this issue, we computed

the minimum, mean and maximum distances between the two alternatives within a choice set

for every design. The results are shown in Table 4. It is clear that the distances decrease

substantially when the prior uncertainty, as measured by κ, is increased. The distances for the

Bayesian D-optimal design when κ = 30 are only half as large as for the locally optimal design,

for which κ = 0. The explanation for this phenomenon lies in the fact that a prior distribution

with a large variance results in parameter draws β(i) with large absolute values when evaluating

the Bayesian D-optimality criterion using Equation (12). If the absolute values of the parameters

in the utility function are large, then substantially different alternatives within a choice set have

substantially different utilities, which results in a complete lack of utility balance and extreme

choice probabilities. The Bayesian D-optimal design prevents this from happening by making

the alternatives within a choice set resemble each other, which guarantees similar utilities and a

certain degree of utility balance.

To show that the Bayesian D-optimal designs indeed exhibit approximate utility balance, we

provide the minimum, mean and maximum values of the product of choice probabilities in a

choice set in Table 5, along with the corresponding values for the locally optimal design for β2

(for which κ = 0). The mean values are all very close to 0.25, while the maximum values are
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(a) κ = 0.5
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(b) κ = 5
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(c) κ = 10
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(d) κ = 30

Figure 5: Bayesian optimal designs for β2 and different levels of uncertainty

Locally Optimal Bayesian D-Optimal
κ = 0 κ = 0.5 κ = 5 κ = 10 κ = 30

min 0.59 0.58 0.51 0.42 0.31
mean 0.82 0.79 0.63 0.53 0.36
max 1.00 0.96 0.76 0.65 0.46

Table 4: Distances between alternatives within a choice set for the locally optimal design and its
Bayesian counterparts
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Locally Optimal Bayesian D-Optimal
κ = 0 κ = 0.5 κ = 5 κ = 10 κ = 30

min 0.18 0.18 0.20 0.21 0.22
mean 0.23 0.23 0.22 0.23 0.23
max 0.25 0.25 0.25 0.25 0.25

Table 5: Utility balance measures for the designs with uncertainty

0.25 for all the designs. Because the locally optimal design and the Bayesian D-optimal design

for κ = 0.5 are very similar, the utility-balance measures for the two designs are identical.

5.3.2 An example with dependent prior distributions

As a final example, we consider a case where the prior distribution for the utility parameters has

non-zero correlations. In order to obtain realistic values for the prior mean and covariance, we

base our prior on an experiment for quantifying preferences for cocktails described in Courcoux

and Séménou (1997). The cocktails were tasted by a panel of consumers and involved three

ingredients: mango juice (x1), blackcurrant syrup (x2) and lemon juice (x3).

Since Courcoux and Séménou (1997) imposed lower bounds of 0.3, 0.15 and 0.1 on the three in-

gredient proportions, we redefine the coordinates of the allowed subregion of the simplex in terms

of pseudocomponents (see Section 3.1). We use a mixed logit model (Train, 2009) to obtain es-

timates of the parameter means and variances, starting from the choice probabilities reported in

Courcoux and Séménou (1997) and assuming a special-cubic Scheffé model. The preference dis-

tribution we obtain is β ∼ N (β0,Σ0), with mean vector β0 = (1.36, 1.57, 2.47,−0.43, 0.50, 1.09)′

and variance-covariance matrix

Σ0 =



6.14 5.00 2.74 −0.43 −2.81 −3.33

5.00 6.76 4.47 −1.79 −6.13 −3.51

2.74 4.47 3.45 −1.38 −4.71 −2.17

−0.43 −1.79 −1.38 1.18 2.39 0.71

−2.81 −6.13 −4.71 2.39 7.43 2.71

−3.33 −3.51 −2.17 0.71 2.71 2.49


.

We next use this distribution as prior distribution for computing a Bayesian D-optimal design

with seven choice sets of two alternatives each. The design is presented in two ways in Figure 6,

once in terms of the true ingredients (left) and once in terms of the pseudocomponents (right).

The figure also shows the contours of the expected utility function. The optimal design in terms

of the pseudocomponents is given in tabular format in Table A.11 in Appendix A.

We compare the Bayesian design’s performance to that of the utility-neutral designs that

result in the best and worst Bayesian D-optimality criterion values. Interestingly, the worst

utility-neutral design is obtained by a clock-wise rotation of the best utility-neutral design. The

best and worst utility-neutral designs are shown in Figure 7. These designs, expressed in terms

of the pseudocomponents, also appear in Tables B.2 and B.3 in Appendix B. We also compare

the performance of the Bayesian design to the locally optimal design which we constructed for
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(b) Design in the pseudocomponents

Figure 6: Bayesian optimal design for the experiment of Courcoux and Séménou (1997)

β0 assuming no uncertainty. The locally optimal design in the original as well as the pseudocom-

ponents is depicted in Figure 8 and tabulated in terms of the pseudocomponents in Table A.12

in Appendix A.

The utility-neutral designs cover the design region more uniformly than the locally optimal

design, which in turn covers the design region more uniformly than the Bayesian design. One

result of this is that the Bayesian design is approximately utility balanced. None of the choice

sets involves alternatives that are more than one color zone apart in the graphical representation

in Figure 6. This is not the case for the two utility-neutral designs in Figure 7, where, for some

of the choice sets, the alternatives are two color zones apart. There is also one choice set for

the locally optimal design in Figure 8 in which the alternatives are two color zones apart. To

further quantify the utility balance, in the Bayesian design, the mean of the product of the choice

probabilities of the different choice sets is 0.23, while its maximum and minimum are equal to

0.24 and 0.21, respectively. The mean, maximum and minimum products equal 0.22, 0.24, 0.18,

respectively, for the best utility-neutral design and 0.20, 0.24, 0.16 for the worst utility-neutral

design. For the locally optimal design, the same measures are 0.23, 0.25 and 0.21. In sum,

the utility-neutral designs score less well in terms of utility balance under β0, while the locally

optimal design scores a bit better.

We next study how the Bayesian D-optimal design performs in comparison to the utility-

neutral and locally optimal designs for different potential true parameter values. To this end, we

randomly draw 10,000 parameter vectors from the normal prior distribution with mean β0 and

variance-covariance matrix Σ0 and, for each draw, calculate D-optimality criterion values for all

four designs. We visualize the resulting D-optimality criterion values in three ways. First, we plot

their distribution for each of the four designs. Second, we create histograms of the D-optimality

criterion values of the Bayesian D-optimal design relative to those of the two utility-neutral and

the locally optimal designs. Finally, we produce scatter plots of the D-optimality criterion values

for the Bayesian design versus those of the utility-neutral and the locally optimal designs.
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(a) Best utility-neutral design in terms of the original
components
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(b) Best utility-neutral design in terms of the
pseudocomponents
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(c) Worst utility-neutral design in terms of the original
components
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(d) Worst utility-neutral design in terms of the
pseudocomponents

Figure 7: Utility-neutral designs for the experiment of Courcoux and Séménou (1997)
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(a) Design in the original components
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(b) Design in the pseudocomponents

Figure 8: Locally optimal design for the experiment of Courcoux and Séménou (1997)

Figure 9 shows the estimated densities of the D-optimality criterion values for the Bayesian,

the two utility-neutral and the locally optimal design. The densities for the locally optimal

and both utility-neutral designs have substantially fatter and longer right tails compared to the

Bayesian design. This indicates that the locally optimal and the utility-neutral designs can result

in much higher D-optimality criterion values. The densities also show that, for some parameter

values, the locally optimal and the utility-neutral designs sometimes yield smaller D-optimality

values than the Bayesian design. However, these cases do not compensate the impact of the long

and fat right tails. This is reflected in the means of the four distributions, which equal 3.47,

3.68, 3.58 and 3.56 for the Bayesian, worst and best utility-neutral and locally optimal designs,

respectively. The locally optimal design performs better than both utility-neutral designs, in

the sense that the distribution’s right tail is lighter and its mean D-optimality criterion value is

smaller than the corresponding means of the utility-neutral designs.

Figure 10 shows the ratios of the D-optimality criterion values of the Bayesian design to the

D-optimality criterion values of the utility-neutral and the locally optimal designs computed for

the 10,000 draws. We clearly see that the histograms are left skewed, meaning that there are many

cases where the ratio is substantially smaller than one. In other words, the utility-neutral and the

locally optimal designs are often substantially worse than the Bayesian design. This is especially

so for the worst utility-neutral design. These histograms also show that there are also scenarios

in which the locally optimal or the utility-neutral designs outperform the Bayesian design, but

that the extent to which this happens is almost never larger than 5%. Moreover, these scenarios

are not as numerous as the scenarios where the locally optimal or the utility-neutral designs are

inferior. The means of the ratios are 0.97 and 0.95 for the best and worst utility-neutral designs,

respectively, and 0.98 for the locally optimal design.

Figure 11 shows scatter plots for (3,000 out of 10,000) D-optimality criterion values computed

for the four designs. In each plot, we compare the Bayesian design to an alternative design. Each

plot shows the D-optimality criterion value for the alternative design on the vertical axis and
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Figure 9: Distribution of D-optimality criterion values for Bayesian, utility-neutral and locally
optimal designs

the criterion value for the Bayesian design on the horizontal axis. Every point above the 45-

degree line corresponds to a parameter vector for which the Bayesian design produces a smaller

D-optimality criterion value than the locally optimal or utility-neutral design. Hence, the larger

the number of points appearing above the 45-degree line, the better the relative performance

of the Bayesian design. The large green circle denotes the scenario corresponding to the zero

parameter vector. The scatter plots show that the Bayesian design is substantially more robust

than the locally optimal or utility-neutral design. As a matter of fact, whenever a point is below

the 45-degree line, it is never very far below. Conversely, some of the points are well above the

line. The Bayesian design outperforms the locally optimal design in 58% of the cases, the best

utility-neutral design in 68% of the cases and the worst utility-neutral design in 60% of the cases.

Again, the locally optimal design performs worse than the Bayesian design but better than both

utility-neutral designs.
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Figure 10: Histogram of ratios of the D-optimality criterion values of the Bayesian design to the
D-optimality criterion values of the utility-neutral and the locally optimal designs
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Figure 11: Scatter plots of D-optimality criterion values for the Bayesian design and the utility-
neutral or locally optimal designs
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6 Conclusion

In this paper, we studied the problem of constructing D-optimal experimental designs for the

multinomial logit model when the alternatives are mixtures of ingredients. We developed a

mixture coordinate-exchange algorithm that is capable of constructing designs for any number of

ingredients and any type of Scheffé model. Because of the nonlinearity of the multinomial logit

model, we adopt a Bayesian approach involving a prior distribution for the model parameters.

We showed that the Bayesian and locally D-optimal designs differ both in look and in perfor-

mance from the utility-neutral ones. Bayesian designs are robust in the sense that they perform

well in a broad range of scenarios and that they never seem to perform very poorly. The Bayesian

and locally D-optimal designs we construct are close to being utility balanced, which is considered

a desirable feature in the literature on choice experiments.

Like all algorithms for constructing Bayesian optimal choice designs, our algorithm is a heuris-

tic. Therefore, our algorithm might not yield the globally optimal design. The extensive use of

coordinate-exchange algorithms in the optimal experimental design literature, however, indicates

that the resulting designs are highly efficient and practically useful. Another issue worth men-

tioning is that, while we focused on the D-optimality criterion, our algorithm can be used for

generating designs that are optimal with respect to other criteria as well, such as the A-, G- and

V-optimality criteria.

Finally, it is our hope that our work will have a beneficial impact on the use of choice exper-

iments for mixtures. The examples in the textbook by Cornell (2002) suggest that ranking data

are very commonly used, but it is known that ranking large numbers of products is tough and

usually requires many pairwise comparisons. It is, therefore, better to use choice sets of size two

(i.e., paired comparisons) or three and ask the respondents to pick the mixture of their choice in

each set (David, 1963).

Appendices

A Experimental Designs
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x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 0.62 0.38
0.28 0.48 0.25 0.00 0.00 1.00

0.65 0.35 0.00 0.38 0.00 0.62
0.00 1.00 0.00 1.00 0.00 0.00

0.00 0.40 0.60 0.25 0.26 0.49
0.45 0.33 0.22 0.33 0.67 0.00

0.61 0.00 0.39
0.00 0.00 1.00

Table A.1: Optimal utility-neutral design with 14 alternatives in 7 choice sets of size 2, produced
by our algorithm, for the special-cubic model for 3 ingredients. Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.40 0.60 0.40 0.00 0.60
0.44 0.34 0.22 1.00 0.00 0.00

0.32 0.68 0.00 0.60 0.00 0.40
0.25 0.25 0.50 0.00 0.00 1.00

0.00 0.60 0.40 1.00 0.00 0.00
0.00 0.00 1.00 0.27 0.45 0.27

0.63 0.37 0.00
0.00 1.00 0.00

Table A.2: Optimal utility-neutral design with 14 alternatives in 7 choice sets of size 2, produced
by JMP10, for the special-cubic model for 3 ingredients. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

0.00 0.27 0.73 0.01 0.54 0.45
0.37 0.30 0.33 1.00 0.00 0.00

0.00 0.03 0.96 0.34 0.00 0.66
0.00 1.00 0.00 1.00 0.00 0.00

0.31 0.32 0.37 0.37 0.58 0.05
0.06 0.94 0.00 0.59 0.00 0.41

0.31 0.69 0.00
0.00 0.54 0.46

Table A.3: Locally optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the original parameter vector β̃ in the artificial sweetener
example in Cornell (2002). Choice sets are separated by dashed lines
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x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 0.63 0.37
0.37 0.63 0.00 0.39 0.22 0.38

1.00 0.00 0.00 0.60 0.40 0.00
0.35 0.00 0.65 0.00 0.60 0.40

0.00 0.24 0.76 0.00 0.00 1.00
0.00 1.00 0.00 0.36 0.32 0.33

0.26 0.44 0.30
0.60 0.00 0.40

Table A.4: Locally optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β1. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

0.22 0.46 0.33 1.00 0.00 0.00
0.59 0.00 0.41 0.38 0.00 0.62

0.25 0.29 0.47 0.00 0.71 0.29
0.00 1.00 0.00 0.00 0.00 1.00

0.00 0.35 0.65 0.00 1.00 0.00
0.49 0.25 0.26 0.63 0.37 0.00

1.00 0.00 0.00
0.38 0.62 0.00

Table A.5: Locally optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β2. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.26 0.47 0.27
0.42 0.58 0.00 0.54 0.00 0.46

0.00 1.00 0.00 0.00 0.69 0.31
0.00 0.31 0.69 0.00 0.00 1.00

0.50 0.25 0.25 0.53 0.47 0.00
0.00 0.53 0.47 0.27 0.28 0.45

0.43 0.00 0.57
1.00 0.00 0.00

Table A.6: Locally optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the original parameter vector βnew

1 . Choice sets are separated
by dashed lines
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x1 x2 x3 x1 x2 x3

0.23 0.44 0.33 1.00 0.00 0.00
0.58 0.00 0.42 0.41 0.00 0.59

0.23 0.30 0.48 0.00 0.68 0.32
0.00 1.00 0.00 0.00 0.00 1.00

0.00 0.33 0.67 0.00 1.00 0.00
0.47 0.26 0.27 0.60 0.40 0.00

1.00 0.00 0.00
0.41 0.59 0.00

Table A.7: Bayesian optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β2 and a κ value of 0.5. Choice sets are
separated by dashed lines

x1 x2 x3 x1 x2 x3

0.36 0.24 0.40 0.40 0.35 0.24
0.64 0.36 0.00 0.00 0.76 0.24

0.00 0.00 1.00 0.40 0.00 0.60
0.00 0.53 0.47 0.35 0.38 0.27

0.00 0.00 1.00 0.00 1.00 0.00
0.46 0.00 0.54 0.00 0.46 0.54

1.00 0.00 0.00
0.54 0.46 0.00

Table A.8: Bayesian optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β2 and a κ value of 5. Choice sets are
separated by dashed lines

x1 x2 x3 x1 x2 x3

0.40 0.26 0.34 0.39 0.00 0.61
0.61 0.39 0.00 0.00 0.00 1.00

0.41 0.00 0.59 0.00 0.44 0.56
0.38 0.33 0.28 0.00 0.00 1.00

0.00 0.54 0.46 0.63 0.37 0.00
0.00 1.00 0.00 1.00 0.00 0.00

0.36 0.42 0.22
0.00 0.79 0.21

Table A.9: Bayesian optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β2 and a κ value of 10. Choice sets are
separated by dashed lines
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x1 x2 x3 x1 x2 x3

0.42 0.31 0.27 0.49 0.00 0.51
0.49 0.51 0.00 0.41 0.25 0.34

0.13 0.18 0.69 0.27 0.73 0.00
0.00 0.00 1.00 0.00 1.00 0.00

0.74 0.12 0.13 0.00 0.67 0.33
1.00 0.00 0.00 0.00 1.00 0.00

0.25 0.33 0.42
0.00 0.50 0.50

Table A.10: Bayesian optimal design with 14 alternatives in 7 choice sets of size 2 for the special-
cubic model for 3 ingredients, for the parameter vector β2 and a κ value of 30. Choice sets are
separated by dashed lines

x1 x2 x3 x1 x2 x3

0.25 0.34 0.40 1.00 0.00 0.00
0.59 0.00 0.41 0.58 0.00 0.42

0.18 0.41 0.41 0.00 0.45 0.55
0.00 1.00 0.00 0.00 0.00 1.00

0.00 0.41 0.59 0.00 1.00 0.00
0.38 0.24 0.38 0.49 0.51 0.00

1.00 0.00 0.00
0.52 0.48 0.00

Table A.11: Bayesian optimal design with 14 alternatives in 7 choice sets of size 2 for the example
from Courcoux and Séménou (1997), expressed in terms of the pseudocomponents. Choice sets
are separated by dashed lines

x1 x2 x3 x1 x2 x3

0.39 0.00 0.61 0.00 0.61 0.39
0.21 0.46 0.33 0.44 0.22 0.34

0.00 1.00 0.00 1.00 0.00 0.00
0.00 0.43 0.57 0.37 0.63 0.00

1.00 0.00 0.00 0.00 1.00 0.00
0.28 0.26 0.46 0.63 0.37 0.00

0.00 0.00 1.00
0.62 0.00 0.38

Table A.12: Locally optimal design with 14 alternatives in 7 choice sets of size 2 for the example
from Courcoux and Séménou (1997), expressed in terms of the pseudocomponents. Choice sets
are separated by dashed lines
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B Permutations of the Utility-Neutral Design

In this appendix, we list all permutations of the columns of the design matrix of the utility-

neutral design introduced in Section 5.1 and given in Figure 1a that lead to the same D-optimality

criterion value of 2.94. As we consider an example with three ingredient proportions, the number

of different permutations is equal to 3! = 6.

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 0.62 0.38
0.28 0.48 0.25 0.00 0.00 1.00

0.65 0.35 0.00 0.38 0.00 0.62
0.00 1.00 0.00 1.00 0.00 0.00

0.00 0.40 0.60 0.25 0.26 0.49
0.45 0.33 0.22 0.33 0.67 0.00

0.61 0.00 0.39
0.00 0.00 1.00

Table B.1: Permutation No 1 of the utility neutral design. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

0.00 1.00 0.00 0.38 0.00 0.62
0.25 0.28 0.48 1.00 0.00 0.00

0.00 0.65 0.35 0.62 0.38 0.00
0.00 0.00 1.00 0.00 1.00 0.00

0.60 0.00 0.40 0.49 0.25 0.26
0.22 0.45 0.33 0.00 0.33 0.67

0.39 0.61 0.00
1.00 0.00 0.00

Table B.2: Permutation No 2 of the utility neutral design. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.62 0.38 0.00
0.48 0.25 0.28 0.00 1.00 0.00

0.35 0.00 0.65 0.00 0.62 0.38
1.00 0.00 0.00 0.00 0.00 1.00

0.40 0.60 0.00 0.26 0.49 0.25
0.33 0.22 0.45 0.67 0.00 0.33

0.00 0.39 0.61
0.00 1.00 0.00

Table B.3: Permutation No 3 of the utility neutral design. Choice sets are separated by dashed
lines
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x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.38 0.62 0.00
0.25 0.48 0.28 1.00 0.00 0.00

0.00 0.35 0.65 0.62 0.00 0.38
0.00 1.00 0.00 0.00 0.00 1.00

0.60 0.40 0.00 0.49 0.26 0.25
0.22 0.33 0.45 0.00 0.67 0.33

0.39 0.00 0.61
1.00 0.00 0.00

Table B.4: Permutation No 4 of the utility neutral design. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

0.00 1.00 0.00 0.62 0.00 0.38
0.48 0.28 0.25 0.00 0.00 1.00

0.35 0.65 0.00 0.00 0.38 0.62
1.00 0.00 0.00 0.00 1.00 0.00

0.40 0.00 0.60 0.26 0.25 0.49
0.33 0.45 0.22 0.67 0.33 0.00

0.00 0.61 0.39
0.00 0.00 1.00

Table B.5: Permutation No 5 of the utility neutral design. Choice sets are separated by dashed
lines

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 0.38 0.62
0.28 0.25 0.48 0.00 1.00 0.00

0.65 0.00 0.35 0.38 0.62 0.00
0.00 0.00 1.00 1.00 0.00 0.00

0.00 0.60 0.40 0.25 0.49 0.26
0.45 0.22 0.33 0.33 0.00 0.67

0.61 0.39 0.00
0.00 1.00 0.00

Table B.6: Permutation No 6 of the utility neutral design. Choice sets are separated by dashed
lines

C Pseudo Code

Notation:

X := the design matrix,

n := the number of alternatives in the experimental design,

k := the number of ingredient proportions,
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p := the number of the parameters in the model,

S := the number of choice sets,

S := the set of starting designs,

DS := the set of D-values of starting designs in S,

S := a particular starting design with the D-value DS ,

O := the set of the constructed optimal designs for each of the starting design,

DOpt := the set of D-values of starting designs in O,

O := a particular optimal experimental design with the D-value DOpt.

Then, the algorithm for constructing the D-optimal experimental design can be described as fol-

lows:

parfor i← 1, starts do

S(i)← ObtainStartingDesign(n, k, p, S)

[O(i),DOpt(i)]← OptimizeStartingDesign(S(i))

end parfor

i← arg mink DOpt(k)

return O(i)

procedure ObtainStartingDesign(n, k, p, S)

1. Choose p distinct design points that maximize the information matrix for a minimum

support design with p observations (see Section 4.1 for a discussion)

2. Replicate them as evenly as possible to obtain n observations for the design matrix X

3. Spread the replicated design points as evenly as possible over the choice sets. Avoid

replicating points within a choice set

4. Assign the remaining non-replicated points to choice sets.

end procedure

procedure OptimizeStartingDesign(S)

DS ← D(S)

DInit ← 10 +DS

DOpt ← DS

X← S
while abs(DInit −DOpt) > 0.0001 do

DInit ← DOpt

for i← 1, n do

for j ← 1, k do

X∗ ← Brent(X, i, j)

DNew ← D(X∗)

if DNew < DOpt then

DOpt ← DNew
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X← X∗

end if

end for

end for

end while

return X, DOpt

end procedure

procedure D(·)
Compute the D-value (see Equation (8))

end procedure

procedure Brent(X, i, j)

Optimize a coordinate (i, j) of a design matrix X by using the method of Brent (1973) (see

Section 4.2)

return optimal design X∗

end procedure
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H. Scheffé. The simplex-centroid design for experiments with mixtures. Journal of the Royal

Statistical Society, Ser. B, (25):235–263, 1963.

W.F. Smith. Experimental Design for Formulation. Siam, 2005.

D. J. Street and L. Burgess. The Construction of Optimal Stated Choice Experiments: Theory

and Methods. Wiley, 2007.

K. Train. Discrete choice methods with simulation. Cambridge University Press, 2009.

H. Uranisi. Optimal design for the special cubic regression model on the q-simplex. Mathematical

Report 1, Kyushu University, General Education Department, 1964.

Bart Vermeulen, Peter Goos, Riccardo Scarpa, and Martina Vandebroek. Bayesian conjoint

choice designs for measuring willingness to pay. Environmental and Resource Economics, 48:

129–149, 2011.

38



J. Yu, P. Goos, and M. Vandebroek. Efficient conjoint choice designs in the presence of respondent

heterogeneity. Marketing Science, 28:122–135, 2009.

J. Yu, P. Goos, and M. Vandebroek. Comparing different sampling schemes for approximating the

integrals involved in the efficient design of stated choice experiments. Transportation Research

Part B: Methodological, 44(10):1268–1289, 2010a.

J. Yu, P. Goos, and M. Vandebroek. Comparing different sampling schemes for approximating the

integrals involved in the efficient design of stated choice experiments. Transportation Research

Part B: Methodological, 44:1268–1289, 2010b.

J. Yu, P. Goos, and M. Vandebroek. Individually adapted sequential Bayesian designs for conjoint

choice experiments. International Journal of Research in Marketing, 28:378–388, 2011.

39


