177 research outputs found
Mechanical Effects in PEM Fuel Cell: Application to Modeling of Assembly Procedure
Mechanical effects can influence significantly electrical performance and life time of PEM fuel cells. A linear elasticplastic
2D model of fuel cell with hardening is used for modeling of assembly procedure of fuel cells. The model
simulates mechanical behavior of the main components of real fuel cell (the membrane, the gas diffusion layers, the
graphite plates, and the seal joints) and clamping elements (the steel plates, the bolts, the nuts). The stress and plastic
deformation in MEA have been calculated using ABAQUS code. The results are presented on the local and the global
scales with respect to the realistic clamping conditions. The first one corresponds to the single tooth/channel structure.
The global scale deals with features of the entire cell and takes into account the border effects, in particular the
influence of seal joints
Electron transport via local polarons at interface atoms
Electronic transport is profoundly modified in the presence of strong electron-vibration coupling. We show that in certain situations, the electron flow takes place only when vibrations are excited. By controlling the segregation of boron in semiconducting Si(111)-3√×3√R30° surfaces, we create a type of adatom with a dangling-bond state that is electronically decoupled from any other electronic state. However, probing this state with scanning tunnelling microscopy at 5 K yields high currents. These findings are rationalized by ab-initio calculations that show the formation of a local polaron in the transport process
Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient
From electrodeless time-resolved microwave conductivity measurements, the
efficiency of charge carrier generation, their mobility, and decay kinetics on
photo-excitation were studied in arrays of Si nanowires grown by the
vapor-liquid-solid mechanism. A large enhancement in the magnitude of the
photoconductance and charge carrier lifetime are found depending on the
incorporation of impurities during the growth. They are explained by the
internal electric field that builds up, due to a higher doped sidewalls, as
revealed by detailed analysis of the nanowire morphology and chemical
composition
Atomic scale investigation of silicon nanowires and nanoclusters
In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers
Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots
Current imaging scanning tunneling microscopy is used to observe the
electronic wavefunctions in InAs/ZnSe core/shell nanocrystals. Images taken at
a bias corresponding to the s conduction band state show that it is localized
in the central core region, while images at higher bias probing the p state
reveal that it extends to the shell. This is supported by optical and tunneling
spectroscopy data demonstrating that the s-p gap closes upon shell growth.
Shapes of the current images resemble atom-like envelope wavefunctions of the
quantum dot calculated within a particle in a box model.Comment: to be published in Physical Review Letter
Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma
Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe
Effect of the location of Mn sites in ferromagnetic Ga
We report a strong correlation between the location of Mn sites in ferromagnetic Ga{sub 1-x}Mn{sub x}As measured by channeling Rutherford backscattering and by particle induced x-ray emission experiments and its Curie temperature. The concentrations of free holes determined by electrochemical capacitance-voltage profiling and of uncompensated Mn{sup ++} spins determined from SQUID magnetization measurements are found to depend on the concentration of unstable defects involving highly mobile Mn interstitials. This leads to large variations in T{sub c} of Ga{sub 1-x}Mn{sub x}As when it is annealed at different temperatures in a narrow temperature range. The fact that annealing under various conditions has failed to produce Curie temperatures above {approx}110K is attributed to the existence of an upper limit on the free hole concentration in low-temperature-grown Ga{sub 1-x}Mn{sub x}As
- …