480 research outputs found

    A "synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells

    Get PDF
    Cochlear hair cells are inhibited by cholinergic efferent neurons. The acetylcholine (ACh) receptor of the hair cell is a ligand-gated cation channel through which calcium enters to activate potassium channels and hyperpolarize the cell. It has been proposed that calcium-induced calcium release (CICR) from a near-membrane postsynaptic store supplements this process. Here, we demonstrate expression of type I ryanodine receptors in outer hair cells in the apical turn of the rat cochlea. Consistent with this finding, ryanodine and other store-active compounds alter the amplitude of transient currents produced by synaptic release of ACh, as well as the response of the hair cell to exogenous ACh. Like the sarcoplasmic reticulum of muscle, the "synaptoplasmic" cistern of the hair cell efficiently couples synaptic input to CICR.Fil: Lioudyno, Maria. Johns Hopkins University School of Medicine; Estados UnidosFil: Hiel, Hakim. Johns Hopkins University School of Medicine; Estados UnidosFil: Kong, Jee-Hyun. Johns Hopkins University School of Medicine; Estados UnidosFil: Katz, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Waldman, Erik. Johns Hopkins University School of Medicine; Estados UnidosFil: Parameshwaran Iyer, Suchitra. Johns Hopkins University School of Medicine; Estados UnidosFil: Glowatzki, Elisabeth. Johns Hopkins University School of Medicine; Estados UnidosFil: Fuchs, Paul A.. Johns Hopkins University School of Medicine; Estados Unido

    Postsynaptic Recordings at Afferent Dendrites Contacting Cochlear Inner Hair Cells: Monitoring Multivesicular Release at a Ribbon Synapse

    Get PDF
    The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse 1-4. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential 5. Ribbon synapses have been shown to operate by multivesicular release, where multiple vesicles can be released simultaneously to evoke excitatory postsynaptic currents (EPSCs) of varying amplitudes 1, 4, 6-11. Neither the role of the presynaptic ribbon, nor the mechanism underlying multivesicular release is currently well understood

    Arachnomelia in Brown Swiss cattle maps to chromosome 5

    Get PDF
    Arachnomelia in Brown Swiss cattle is a monogenic autosomal recessive inherited congenital disorder of the skeletal system giving affected calves a spidery look (OMIA ID 000059). Over a period of 20years 15 cases were sampled in the Swiss and Italian Brown cattle population. Pedigree data revealed that all affected individuals trace back to a single acknowledged carrier founder sire. A genome scan using 240 microsatellites spanning the 29 bovine autosomes showed homozygosity at three adjacent microsatellite markers on bovine Chr 5 in all cases. Linkage analysis confirmed the localization of the arachnomelia mutation in the region of the marker ETH10. Fine-mapping and haplotype analysis using a total of 34 markers in this region refined the critical region of the arachnomelia locus to a 7.19-Mb interval on bovine Chr 5. The disease-associated IBD haplotype was shared by 36 proven carrier animals and allows marker-assisted selection. As the corresponding human and mouse chromosome segments do not contain any clear functional candidate genes for this disorder, the mutation causing arachnomelia in the Brown Swiss cattle might help to identify an unknown gene in bone developmen

    Association studies using random and "candidate" microsatellite loci in two infectious goat diseases

    Get PDF
    We established a set of 30 microsatellites of Bovidae origin for use in a biodiversity study in Swiss and Creole goats. Additional microsatellites located within or next to "candidate" genes of interest, such as cytokine genes (IL4, INF-gamma) and MHC class II genes (DRB, DYA) were tested in the caprine species in order to detect possible associations with two infectious caprine diseases. Microsatellite analysis was undertaken using automated sequencers (ABI373 & 3100). In the first study, a total of 82 unrelated Creole goats, 37 resistant and 45 susceptible to Heartwater disease (Cowdriosis) were analysed. In this study, the two microsatellite loci DRBP1 (MHCII) and BOBT24 (IL4) were positively associated with disease susceptibility, demonstrating a corrected P-value of 0.002 and 0.005, respectively. In a second investigation, we tested 36 goats, naturally infected with the nematode parasite Trichostrongylus colubriformis. These animals were divided into a "low" and "high" excreting group on the basis of two independently recorded fecal egg counts. For this nematode resistance study, we detected a significant association of one of the alleles of the microsatellite locus SPS113 with "low" excretion (resistance). The MHC class II locus DYA (P19), was weakly associated with susceptibility in both diseases (Pc = 0.05). In future experiments, we will extend the sample size in order to verify the described associations

    A novel α-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between Rat α9α10 and α7 nicotinic cholinergic receptors

    Get PDF
    The α9 and α10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of α9 and α10 overlaps with that of α7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin α-conotoxin PeIA that discriminates between α9α10 and α7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. α-Conotoxin PeIA displayed a 260-fold higher selectivity for α-bungarotoxin-sensitive α9α10 nAChRs compared with α-bungarotoxin-sensitive α7 receptors. The IC50 of the toxin was 6.9 ± 0.5 nM and 4.4 ± 0.5 nM for recombinant α9α10 and wild-type hair cell nAChRs, respectively. α-Conotoxin PeIA bears high resemblance to α-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither α-conotoxin MII nor α-conotoxin GIC at concentrations of 10 μM blocked acetylcholine responses elicited in Xenopus oocytes injected with the α9 and α10 subunits. Among neuronal non-α-bungarotoxin- sensitive receptors, α-conotoxin PeIA was also active at α3β2 receptors and chimeric α6/α3β2β3 receptors. α-Conotoxin PeIA represents a novel probe to differentiate responses mediated either through α9α10 or α7 nAChRs in those tissues where both receptors are expressed.Fil: McIntosh, J. Michael. University of Utah; Estados UnidosFil: Plazas, Paola Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Watkins, Maren. University of Utah; Estados UnidosFil: Gomez Casati, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Olivera, Baldomero M.. University of Utah; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing

    Get PDF
    The present study was to construct a parentage testing system for Thoroughbred (TB) horse. A total number of 1,285 TB horse samples including 962 foals for parentage testing, 9 sires and 314 dams for individual identification were genotyped. Genomic DNA was extracted from 5 hair roots and genotyped by using 14 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). This method consisted of multiplexing PCR procedure and showed reasonable amplification of all PCR products. Genotypes were determined by genetic analyzer. The number of alleles per locus varied from 3 to 9 with a mean value of 6.36 in TB horse. The expected heterozygosity was ranged from 0.548 to 0.831 (mean 0.699), and the total exclusion probability of 14 microstellite loci was 0.9998. Of the 14 markers, ASB2, ASB17, ASB23, HMS7 and HTG10 loci have relatively high PIC value (> 0.7). Of the 962 foals, 960 foals were qualified by compatibility according to the Mendelism. These results suggest that the DNA typing method has high potential for parentage verification and individual identification of TB horses

    Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

    Get PDF
    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres
    corecore