3,601 research outputs found

    Bot’n roll robotic kit as a learning tool for youngsters

    Get PDF
    Activities involving robotics, projecting assembling and programming robots are in essence hands-on and inquiry-based activities leading to an effective learning of different aspects of science and technology among others. Different approaches have being used to introduce robotics in the education of young children. In this communication we will present an approach that in an inquiry based science education, IBSE, perspective, uses an informal environment to introduced robotics, as well as a range of other science and technology, concepts and competencies to young students. Many youngsters are getting interested on general technology and the robotics field in particular. Even though their knowledge is very basic they are very enthusiastic and willing to learn quickly. Most robotics events consist of competitions, and that means the youngsters still need guidance by professionals. RoboParty is a different educational robotics event that teaches the participants, with IBSE hands-on techniques, how to build a robot from scratch to program it and in the end they keep the robot they built for themselves for further exploration. Such robot to be built by the young children for the first time needs to be very easy and with a friendly programming language. The Bot’n Roll robotics kit was developed specifically for the RoboParty event, and has since then been improved with more sensors and actuators, which are simple to built and easy to use. The Bot’n Roll robot family launched recently another more complex robot that uses omnidirectional wheels and that can be used on other robotic competitions like world known RoboCup. This paper describes also the Bot’n Roll robots and show how they are built, bearing in mind that these robots were developed for youngsters who never worked with robotics

    Raman threshold for nth-order cascade Raman amplification

    Get PDF
    We study theoretically and experimentally Raman threshold for 1, 2, ... , n orders Stokes in a free running configuration. Using alternative way to solve the differential coupled equations that describe the stimulate Raman scattering, we find simple mathematical expressions that allow calculating the necessary pumping power to obtain Raman threshold for nth-order Stokes and the maximum output power available in each Stokes. The theoretical calculations coincide with the results obtained experimentally

    Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats

    Get PDF
    AbstractWe have recently found that cannabinoid receptor binding and gene expression markedly decreased in extrapyramidal structures of aged rats. The present study was designed to analyze the possible existence of similar aging-induced changes in cannabinoid receptor binding and gene expression in brain regions other than extrapyramidal areas, but that also contain a significant population of cannabinoid receptors, such as the cerebellum, hippocampal structures, limbic and hypothalamic nuclei, the cerebral cortex and others. To this end, we analyzed cannabinoid receptor binding, using autoradiography, and cannabinoid receptor mRNA levels, using in situ hybridization, in slide-mounted brain sections obtained from young (3 month old) and aged (>2 year old) rats. Results were as follows. In the cerebellum, aged rats exhibited a marked decrease in cannabinoid receptor binding in the molecular layer (−33.3%), although accompanied by no changes in mRNA levels in the granular layer. In the cerebral cortex, a small, although statistically significant, decrease in binding was found in the deep layer (VI) (−18.3%) of aged rats, whereas no changes were found in the superficial layer (I). As in the case of the cerebellum, mRNA levels did not change in the cerebral cortex layers (II–III and V–VI). The different regions of the Ammon’s horn of the hippocampus exhibited similar cannabinoid receptor binding levels in aged and young rats. Interestingly, mRNA levels decreased in aged rats to a small, but statistically significant, extent (CA1: −26.1%; CA2: −21.6%; CA3: −14.4%). This was also seen in another hippocampal structure, the dentate gyrus (−14.6%), although in this region binding levels increased in aged rats (+28.4%). Two hypothalamic structures, the arcuate nucleus and the ventromedial hypothalamic nucleus, exhibited decreased cannabinoid receptor binding in aged rats (−31.1% and −30.3%, respectively), but this was not seen in the medial preoptic area. This was accompanied by no changes in mRNA levels in the ventromedial hypothalamic nucleus. In the limbic structures, aged rats exhibited similar binding levels to young rats. This was seen in the nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus. However, mRNA levels slightly decreased in the basolateral amygdaloid nucleus (−13.4%), whereas they were not altered in the septum nuclei. Finally, other brain structures, such as the central gray substance and the brainstem, exhibited similar binding levels in aged and young rats. However, it is important to note that mRNA levels increased significantly (+211.2%) in the brainstem of aged rats, an area where the levels of binding and mRNA were very low in young rats. This marked increase may be related to an increase in the presence of glial elements in this region, as revealed by the increase in the immunoreactivity for glial fibrillary acidic protein observed in the brainstem of aged rats as compared to young animals. In summary, senescence was associated with changes in cannabinoid receptors in the cerebellum, the cerebral cortex, limbic and hypothalamic structures, the hippocampus and other brain regions. However, the changes observed (i) were not as marked and relevant as those early reported in extrapyramidal areas, and (ii) exhibited regional differences that might be attributed to the different roles played by these receptors in each region. Of particular relevance by their magnitude were the aging-induced decrease in binding found in the cerebellum and the hypothalamus, and the increase in mRNA levels observed in the brainstem. The latter might be related to an increase in the presence of glial cells which might contain cannabinoid receptor mRNA

    DEVELOPMENT OF A SCADA SYSTEM FOR ACCESS, PROCESSING AND SUPERVISION OF DATA COMING FROM A WIRELESS SENSORS NETWORK IN AGRO-ENVIRONMENTAL APPLICATIONS

    Get PDF
    Wireless sensors networks appeared in the 1970’s for military and industrial use. They have since undergone a major evolution, particularly since the 90’s, thanks to the improvements in wireless communications. These changes have allowed them to participate in a wide variety of applications in different sectors such as agriculture and environment. This paper shows the development of a SCADA application programmed with LabVIEW® 8.6 (National Instruments), which allows management of data received by wireless sensors networks through a friendly interface for users. For the application shown in this paper we have worked with a MEP 510 sensors network (Crossbow). The functionalities implemented are the following: Network configuration; Data storage into database; Statistical processing of historical data with polynomial adjustment and spline interpolation; Visualization by data graphics in real time and historical data; Visualization of 2D intensity diagrams from the spatial distribution of sensors; and Creation of a users registry system that allows, depending on the category assigned, receiving or not access privileges in the application. As a complement we have developed the possibility of remote access. Sensors network implemented and the applications developed have been checked by operational tests for each functionality, as well as sensors joining and leaving the network situations, range of variables and working modes. The results obtained show the robustness of the SCADA application and the limitations of wireless sensors networks operating on field conditions

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    The Mpemba effect in spin glasses is a persistent memory effect

    Get PDF
    The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a non-equilibrium process, governed by the coherence length \xi of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and \xi that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing new avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.Comment: Version accepted for publication in PNAS. 6 pages, 7 figure

    Critical parameters of the three-dimensional Ising spin glass

    Full text link
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several universal quantities at Tc.Comment: 9 pages, 5 figure

    Janus II: a new generation application-driven computer for spin-system simulations

    Get PDF
    This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures, which can be implemented with available electronics technologies, may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.Comment: 28 pages, 6 figure

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic
    corecore