68 research outputs found

    Ebf3āŗ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells

    Get PDF
    Lympho-hematopoiesis is regulated by cytokines; however, it remains unclear how cytokines regulate hematopoietic stem cells (HSCs) to induce production of lymphoid progenitors. Here, we show that in mice whose CXC chemokine ligand 12 (CXCL12) is deleted from half HSC niche cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, HSCs migrate from CXCL12-deficient niches to CXCL12-intact niches. In mice whose CXCL12 is deleted from all Ebf3+/leptin receptor (LepR)+ CAR cells, HSCs are markedly reduced and their ability to generate B cell progenitors is reduced compared with that to generate myeloid progenitors even when transplanted into wild-type mice. Additionally, CXCL12 enables the maintenance of B lineage repopulating ability of HSCs in vitro. These results demonstrate that CAR cell-derived CXCL12 attracts HSCs to CAR cells within bone marrow and plays a critical role in the maintenance of HSCs, especially lymphoid-biased or balanced HSCs. This study suggests an additional mechanism by which cytokines act on HSCs to produce B cells.Nakatani T., Sugiyama T., Omatsu Y., et al. Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells. Nature Communications 14, 6402 (2023); https://doi.org/10.1038/s41467-023-42047-2

    Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression.

    Get PDF
    Covalent modifications of histones play an important role in chromatin architecture and dynamics. In particular, histone lysine methylation is important for transcriptional control during diverse biological processes. The nuclear protein Jmjd5 (also called Kdm8) is a histone lysine demethylase that contains a JmjC domain in the C-terminal region. In this study, we have generated Jmjd5-deficient mice (Jmjd5Ī”/Ī”) to investigate the in vivo function of Jmjd5. Jmjd5Ī”/Ī” embryos showed severe growth retardation, resulting in embryonic lethality at the mid-gestation stage. Mouse embryonic fibroblasts (MEFs) derived from Jmjd5 hypomorphic embryos (Jmjd5neo/neo) also showed the growth defect. Quantitative PCR analysis of various cell cycle regulators indicated that only Cdkn1a expression was upregulated in Jmjd5neo/neo MEFs and Jmjd5Ī”/Ī” embryos. A knockdown assay with Cdkn1a-specific small interfering RNAs revealed that the growth defect of Jmjd5neo/neo MEFs was significantly rescued. In addition, a genetic study using Jmjd5Ī”/Ī”; Cdkn1aĪ”/Ī” double-knockout mice showed that the growth retardation of Jmjd5Ī”/Ī” embryos was partially rescued by Cdkn1a deficiency. Chromatin immunoprecipitation analysis showed that increased di-methylated lysine 36 of histone H3 (H3K36me2) and reduced recruitment of endogenous Jmjd5 were detected in the transcribed regions of Cdkn1a in Jmjd5neo/neo MEFs. Taken together, these results suggest that Jmjd5 physiologically moderates embryonic cell proliferation through the epigenetic control of Cdkn1a expression.Accepted December 16, 2011

    Strain-Dependent Prion Infection in Mice Expressing Prion Protein with Deletion of Central Residues 91ā€“106

    Get PDF
    Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91ā€“106 were generated in the absence of endogenous PrPC, designated Tg(PrPĪ”91ā€“106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrPĪ”91ā€“106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPScĪ”91ā€“106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPScĪ”91ā€“106 and prions in the brain after inoculation with BSE prions. Recombinant PrPĪ”91-104 converted into PrPScĪ”91ā€“104 after incubation with BSE-PrPSc-prions but not with RML- and 22Lā€“PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrPĪ”91ā€“104 into PrPScĪ”91ā€“104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91ā€“106 or 91ā€“104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc

    Detection of the Onset of Ischemia and Carcinogenesis by Hypoxia-Inducible Transcription Factor-Based In Vivo Bioluminescence Imaging

    Get PDF
    An animal model for the early detection of common fatal diseases such as ischemic diseases and cancer is desirable for the development of new drugs and treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that regulates oxygen homeostasis and plays key roles in a number of diseases, including cancer. Here, we established transgenic (Tg) mice that carry HRE/ODD-luciferase (HOL) gene, which generates bioluminescence in an HIF-1-dependent manner and was successfully used in this study to monitor HIF-1 activity in ischemic tissues. To monitor carcinogenesis in vivo, we mated HOL mice with rasH2 Tg mice, which are highly sensitive to carcinogens and are used for short-term carcinogenicity assessments. After rasH2-HOL Tg mice were treated with N-methyl-N-nitrosourea, bioluminescence was detected noninvasively as early as 9 weeks in tissues that contained papillomas and malignant lesions. These results suggest that the Tg mouse lines we established hold significant potential for monitoring the early onset of both ischemia and carcinogenesis and that these lines will be useful for screening chemicals for carcinogenic potential

    Phase separation of an actin nucleator by junctional microtubules regulates epithelial function

    Get PDF
    Liquid-liquid phase separation (LLPS) is involved in various dynamic biological phenomena. In epithelial cells, dynamic regulation of junctional actin filaments tethered to the apical junctional complex (AJC) is critical for maintaining internal homeostasis against external perturbations; however, the role of LLPS in this process remains unknown. Here, after identifying a multifunctional actin nucleator, cordon bleu (Cobl), as an AJC-enriched microtubule-associated protein, we conducted comprehensive in vitro and in vivo analyses. We found that apical microtubules promoted LLPS of Cobl at the AJC, and Cobl actin assembly activity increased upon LLPS. Thus, microtubules spatiotemporally regulated junctional actin assembly for epithelial morphogenesis and paracellular barriers. Collectively, these findings established that LLPS of the actin nucleator Cobl mediated dynamic microtubule-actin cross-talk in junctions, which fine-tuned the epithelial barrier

    The Role of the OR Region in BSE Pathogenesis

    Get PDF
    Conformational conversion of the cellular isoform of prion protein PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP-knockout background, designated Tg(PrPĪ”OR)/Prnp0/0 mice, did not reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScĪ”OR in their brains. We show here that Tg(PrPĪ”OR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPĪ”OR into PrPScĪ”OR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPĪ”OR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScĪ”OR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPĪ”OR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions. IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc. We show here that, by inoculating the three different prion strains of RML, 22L and BSE prions, into Tg(PrPāˆ†OR)/Prnp0/0 mice, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML or 22L scrapie prions and BSE prions. PrPĪ”OR was efficiently converted into PrPScĪ”OR after infection with RML and 22L prions. However, the conversion of PrPĪ”OR into PrPScĪ”OR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPC into PrPSc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions

    Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis

    Get PDF
    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention

    Dialkyl Carbonates in the Green Synthesis of Heterocycles

    Get PDF
    This review focuses on the use of dialkyl carbonates (DACs) as green reagents and solvents for the synthesis of several 5- and 6-membered heterocycles including: tetrahydrofuran and furan systems, pyrrolidines, indolines, isoindolines, 1,4-dioxanes, piperidines, and cyclic carbamates. Depending on the heterocycle investigated, the synthetic approach used was different. Tetrahydrofuran systems, pyrrolidines, indolines, isoindoline, and 1,4-dioxanes were synthesized using dimethyl carbonate (DMC) as sacrificial molecule (BAc2/BAl2 mechanism). Cyclic carbamates, namely 1,3-oxazin-2-ones, were prepared employing DACs as carbonylating agents, either by BAc2/BAl2 mechanism or through a double BAc2 mechanism. Piperidines were synthetized taking advantage of the anchimeric effect of a new family of dialkyl carbonates, i.e., mustard carbonates. Finally, in the case 5-hydroxymethylfurfural (HMF), DMC has been employed as efficient extracting solvent of this extensively investigated bio-based platform chemical from the reaction mixture. These synthetic approaches demonstrate, once again, the great versatility of DACs and theirā€”yet to be fully exploredā€”potential as green reagents and solvents in the synthesis of heterocycles

    Mouse sperm undergo GPI-anchored protein release associated with lipid raft reorganization and acrosome reaction to acquire fertility.

    Get PDF
    Mammalian sperm undergo several maturation steps after leaving the testis to become competent for fertilization. Important changes occur in sperm within the female reproductive tract, although the molecular mechanisms underlying these processes remain unclear. To investigate sperm membrane remodeling upon sperm maturation, we developed transgenic mouse lines carrying glycosylphosphatidylinositol (GPI)-anchored enhanced green fluorescent protein (EGFP-GPI) and traced the fate of this fluorescent protein during the fertility-acquiring process in sperm in vitro and in vivo. When the GFP-labeled sperm were treated with compounds for promoting the acrosome reaction, EGFP-GPI was released from the sperm surface crosslinked with characteristic relocation of a lipid raft marker ganglioside GM1. Sperm ejaculated into the uterus strongly expressed EGFP-GPI in the head region, whereas a part of the oviductal sperm lost fluorescence in a manner that was dependent on the presence of angiotensin-converting enzyme (ACE). Moreover, sperm on the zona pellucida of eggs in the oviduct were all found to have low levels of GFP. These results suggest that sperm undergoing GPI-anchored protein release associated with reorganization of lipid rafts and the acrosome reaction acquire fertilization potential
    • ā€¦
    corecore