743 research outputs found
Comparison of ten packages that compute ocean carbonate chemistry
International audienceMarine scientists often use two measured or modeled carbonate system variables to compute others. These carbonate chemistry calculations, based on well-known thermodynamic equilibria, are now available in a dozen public packages. Ten of those were compared using common input data and the set of equilibrium constants recommended for best practices. Current versions of all 10 packages agree within 0.2 μatm for pCO2, 0.0002 units for pH, and 0.1 μmol kg−1 for CO32− in terms of surface zonal-mean values. That represents more than a 10-fold improvement relative to outdated versions of the same packages. Differences between packages grow with depth for some computed variables but remain small. Discrepancies derive largely from differences in equilibrium constants. Analysis of the sensitivity of each computed variable to changes in each constant reveals the general dominance of K1 and K2 but also the comparable sensitivity to KB for the AT–CT input pair. Best-practice formulations for K1 and K2 are implemented consistently among packages. Yet with more recent formulations designed to cover a wider range of salinity, packages disagree by up to 8 μatm in pCO2, 0.006 units in pH, and 1 μmol kg−1 in CO32− under typical surface conditions. They use different proposed sets of coefficients for these formulations, all of which are inconsistent. Users would do well to use up-to-date versions of packages and the constants recommended for best practices
Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord
he anthropogenic increase of carbon dioxide (CO2) alters the seawater carbonate chemistry, with a decline of pH and an increase in the partial pressure of CO2 (pCO2). Although bacteria play a major role in carbon cycling, little is known about the impact of rising pCO2 on bacterial carbon metabolism, especially for natural bacterial communities. In this study, we investigated the effect of rising pCO2 on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism during a mesocosm experiment performed in Kongsfjorden (Svalbard) in 2010. Nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were deployed in the fjord and monitored for 30 days. Generally BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold average) but temporary increase on day 10, and increased slightly after inorganic nutrient addition. Over the wide range of pCO2 investigated, the patterns in BP and growth rate of bulk and free-living communities were generally similar over time. However, BP of the bulk community significantly decreased with increasing pCO2 after nutrient addition (day 14). In addition, increasing pCO2 enhanced the leucine to thymidine (Leu : TdR) ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. Stepwise multiple regression analysis suggests that multiple factors, including pCO2, explained the changes of BP, growth rate and Leu : TdR ratio at the end of the experiment. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Overall, the results suggest that changes in pCO2 potentially influence bacterial production, growth rate and growth balance rather than the conversion of dissolved organic matter into CO2
Survival of Listeria monocytogenes in uncooked Italian dry sausage (salami).
This study was undertaken to supplement existing information on the survival of Listeria monocytogenes in Italian salami. The fact that Italian salami is frequently consumed by a large number of people poses some serious health implications. Some raw materials have been found to be microbiologically contaminated, for their production occurs without any thermic treatment, and these are in circulation throughout Italy all year round. We selected the product for its microbiological, technological, and commercial characteristics. We analyzed 1,020 samples taken during the autumn and winter 2002 and spring and summer 2003 periods and immediately before selling. The samples were collected from 17 plants with an annual production of between 1 and 2,000 metric tons and with a distribution of products in over 80% of Italy in geographic terms. To detect and enumerate L. monocytogenes, we followed International Organization for Standardization (ISO) 11290 part 1 and 2: 1996 (modified using chromogenic medium Agar Listeria according to Ottarviani and Agosti [ALOA]). L. monocytogenes was found in 22.7% of samples, but the contamination level was less than 10 CFU/g. Contamination prevalence ranged from 1.6 to 58.3% and was lower than 10% in 5 of the 17 plants checked. The most frequently isolated serotypes were 1/2c, 1/2a, 1/2b, and 4b. Additional studies are necessary to establish if the exposure to a small number of L. monocytogenes cells through the consumption of salami represents a significant health risk and, in light of the future introduction of the SANCO/4198/2001 revision 21 "Commission Regulation on Microbiological Criteria for Foodstuffs," is a necessary investigation
Lahar risk assessment from source identification to potential impact analysis: the case of Vulcano Island, Italy
Lahars are rapid flows composed of water and volcaniclastic sediments, which have the potential to impact residential buildings and critical infrastructure as well as to disrupt critical services, especially in the absence of hazard-based land-use planning. Their destructive power is mostly associated with their velocity (related to internal flow properties and topographic interactions) and to their ability to bury buildings and structures (due to deposit thickness). The distance reached by lahars depends on their volume, on sediments/water ratio, as well as on the geometrical properties of the topography where they propagate. Here we present the assessment of risk associated with lahar using Vulcano island (Italy) as a case study. First, we estimated an initial lahar source volume considering the remobilisation by intense rain events of the tephra fallout on the slopes of the La Fossa cone (the active system on the island), where the tephra fallout is associated with the most likely scenario (e.g. long-lasting Vulcanian cycle). Second, we modelled and identified the potential syn-eruptive lahar impact areas on the northern sector of Vulcano, where residential and touristic facilities are located. We tested a range of parameters (e.g., entrainment capability, consolidation of tephra fallout deposit, friction angle) that can influence lahar propagation output both in terms of intensity of the event and extent of the inundation area. Finally, exposure and vulnerability surveys were carried out in order to compile exposure and risk maps for lahar-flow front velocity (semi-quantitative indicator-based risk assessment) and final lahar-deposit thickness (qualitative exposure-based risk assessment). Main outcomes show that the syn-eruptive lahar scenario with medium entrainment capability produces the highest impact associated with building burial by the final lahar deposit. Nonetheless, the syn-eruptive lahar scenario with low entrainment capacity is associated with higher runout and results in the highest impact associated with lahar-flow velocities. Based on our simulations, two critical infrastructures (telecommunication and power plant), as well as the main road crossing the island are exposed to potential lahar impacts (either due to lahar-flow velocity or lahar-deposit thickness or both). These results show that a risk-based spatial planning of the island could represent a valuable strategy to reduce the volcanic risk in the long term
Artificial neural network analysis of factors controling ecosystem metabolism in coastal systems
Knowing the metabolic balance of an ecosystem is of utmost importance in determining whether the system is a net source or net sink of carbon dioxide to the atmosphere. However, obtaining these estimates often demands significant amounts of time and manpower. Here we present a simplified way to obtain an estimation of ecosystem metabolism. We used artificial neural networks (ANNs) to develop a mathematical model of the gross primary production to community respiration ratio (GPP:CR) based on input variables derived from three widely contrasting European coastal ecosystems (Scheldt Estuary, Randers Fjord, and Bay of Palma). Although very large gradients of nutrient concentration, light penetration, and organic-matter concentration exist across the sites, the factors that best predict the GPP:CR ratio are sampling depth, dissolved organic carbon (DOC) concentration, and temperature. We propose that, at least in coastal ecosystems, metabolic balance can be predicted relatively easily from these three predictive factors. An important conclusion of this work is that ANNs can provide a robust tool for the determination of ecosystem metabolism in coastal ecosystems
Morphoanatomical characters for the recognition of two species of asclepias in the province of Santa Fe, Argentina
We disclose a morpho-anatomical study of Asclepias curassavica L. and Asclepias mellodora
St.-Hil., collected in the Province of Santa Fe, Argentina. Whole plants of both species are commercialized
for external and internal use due to its attributed therapeutic properties. For each entity we provide synonyms,
folk names, morphological description, common and uncommon anatomical characteristics of
roots, stems and leaves. These features were analyzed by optical and scanning electron microscopy. Photomicrographs
are included in order to provide adequate differentiation between entitiesColegio de Farmacéuticos de la Provincia de Buenos Aire
Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy, and Cellular Biology
We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects
GNSS-based Location Determination System Architecture for railway performance assessment in presence of local effects
GNSS plays a strategic role on the introduction of the Virtual Balise functionality and the train integrity. Thanks to GNSS, it could be possible to realize cost effective solutions to increase the safety in the regional lines, where the traffic density is lower. The train position estimation is implemented taking into account that the train is constrained to lie on the track (i.e. track constraint). In this way, we can express the position in terms of the curvilinear abscissa (progressive mileage) of the track corresponding to the train position. However, the impact of local effects such as multipath, foliage attenuation and shadowing in the railway environment plays a crucial role due to the presence of infrastructures like platform roofs, side walls, tunnel entrances, buildings and so on close to the trackside. In the paper, we analyse the impact of those threats on the train GNSS-based position estimation performance. At this aim, several scenarios have been generated by using both real data acquired on a railway test-bed in Sardinia, and synthetic data generated in the lab through ad hoc multipath and foliage models.
A sensitivity analysis has been conducted, varying main scenarios parameters (e.g. height of obstacles, presence of trees and shadowing). The result of the performed analysis, in terms of availability, accuracy and integrity, are here presented. mitigations implemented by the ERTMS at system level are not considered since the attention is focused on GNSS only
- …