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Abstract—GNSS plays a strategic role on the introduction of 

the Virtual Balise functionality and the train integrity. Thanks to 

GNSS, it could be possible to realize cost-effective solutions to 

increase the safety in the regional lines, where the traffic density 

is lower. The train position estimation is implemented taking into 

account that the train is constrained to lie on the track (i.e. track 

constraint). In this way, we can express the position in terms of 

the curvilinear abscissa (progressive mileage) of the track 

corresponding to the train position. However, the impact of local 

effects such as multipath, foliage attenuation and shadowing in 

the railway environment plays a crucial role due to the presence 

of infrastructures like platform roofs, side walls, tunnel 

entrances, buildings and so on close to the trackside. In the 

paper, we analyse the impact of those threats on the train GNSS-

based position estimation performance. At this aim, several 

scenarios have been generated by using both real data acquired 

on a railway test-bed in Sardinia, and synthetic data generated in 

the lab through ad hoc multipath and foliage models. 

A sensitivity analysis has been conducted, varying main scenarios 

parameters (e.g. height of obstacles, presence of trees and 

shadowing). The result of the performed analysis, in terms of 

availability, accuracy and integrity, are here presented. 

mitigations implemented by the ERTMS at system level are not 

considered since the attention is focused on GNSS only. 

 

Keywords— GNSS (Global Navigation Satellite Systems), 

ERTMS (European Railway Traffic Management System / 

European Train Control System), AIMN (Augmentation and 

Integrity Monitoring Network). 

I.  INTRODUCTION  

According with [1], [2], [3], the introduction of GNSS 
technology and the IP (Internet Protocol) based communication 
is the next frontier for the European standard for train control: 
ERTMS. Major benefits of such innovation rely in the 
possibility to reduce the maintenance and operational costs 
without losing in terms of system safety. This consideration 
leads to the possibility of a cost effective solution for the 
modernization of the regional low traffic density lines that in 
Europe represent a big market slice [4]. The big challenge in 

the adoption of the GNSS technology is represented by the 
fulfilment of the SIL 4 (Safety Integrity Level) requirement 
defined by Comité Européen de Normalisation 
Électrotechnique (CENELEC). With this scope, we have to 
achieve the same total hazardous failure rate of the traditional 
mechanical odometers [1], [5], [6], [7], [8]. To reach such high 
performance, the use of augmentation systems is highly 
recommended. In literature, different architectures have been 
proposed [9], [10]. Another important issue is related to SIS 
(Signal In Space) integrity assessment. A position solution by 
a satellite fault or strongly prejudiced by atmospheric or local 
effect as multipath, can lead to a Misleading Information. 
According to that, the adoption of an integrity monitoring 
network is mandatory. In literature, the integrity monitoring 
has been studied both in terms of RAIM (Receiver 
Autonomous Integrity Monitoring) [11], [12], [13], [14], and 
IMN (Integrity Monitoring Network) algorithms [10], [15], 
[16], [17]. 

The goal of this work is to evaluate the impact of the local 
effects (multipath, foliage and shadowing) on the train 
position estimation calculated through GNSS-based LDS 
(Location Determination System), taking into account the rail 
requirements. At this aim, real data acquired on a railway test-
bed in Sardinia (along Cagliari-San Gavino railway track) and 
synthetic data generated through multipath and foliage models 
(by using SPIRENT GSS8000 simulator) have been used. Real 
data were collected within the GSA (European GNSS 
Supervisory Authority) Horizon 2020 ERSAT EAV [20]. LA 
data, through the implementation of the 2-tiers integrity 
monitoring algorithm ([10]), have been included into the 
analysis.  

The paper is organised as it follows. Section II describes 
the GNSS LDS railway reference architecture considered for 
the performance analysis in presence of local effects. Then, it 
shows the fault tree analysis applied to that architecture. 

Section III reports the methodology adopted for evaluating 
the GNSS-LDS reference architecture performance in 
presence of multipath, shadowing and foliage through real 
data acquired on field and synthetic data.  



Section IV illustrates the results of the sensitivity analysis 
in terms of availability, accuracy and integrity, considering 
two main ERTMS operational phases: Full Supervision (FS) 
and Start of Mission (SoM).  Finally, Section V reports the 
conclusions.  

II. GNSS LDS REFERENCE ARCHITECTURE FOR 

RAILWAY 

The Reference Architecture GNSS based LDS is 
composed of the following components: 

• On Board Unit (OBU): it applies the Augmentation 
messages coming from the Radio Block Center 
(RBC) for calculating the train position; 

• Radio Block Constituent (RBC): knowing the train 
position, it is in charge of defining and sending the 
Movement Authority to the OBU; 

• SBAS (Satellite Based Augmentation System) 
Ground Services: the terrestrial services provided to 
the user by the SBAS Ground Segment (e.g. EDAS 
(EGNOS Data Access Service) for EGNOS 
(European Geostationary Navigation Overlay 
Service)); 

• Radio Communication Network: it is the rail 
communication network used by the rail operator for 
the communication between the RBC and the OBU; 

• GPS and GALILEO Ground Services: ancillary 
services provided to the user by the GNSS Ground 
Segment (e.g. precise ephemeris, almanacs, geodetic 
reference frame parameters); an example of that is the 
IGS (International GNSS Service) RTS (Real Time 
Service) system for GPS and the GRSP (Geodetic 
Reference Service Provider) for GALILEO; 

• high QoS (Quality of Service)/Security 
Communication Network: a high QoS (low latency, 
low number of lost packets) is needed between the 
GPS and Galileo Ground Services operators, SBAS 
Ground Services operators, external LA Network and 
the RBC (Radio block Centre) component of the Rail 
TCS system; furthermore, a high level of security is 
needed for Cyber-attacks counteraction. 

• high integrity GNSS Reference Station Network: 
they implement an FDE (Fault Detection and 
Exclusion) algorithm in order to perform the first 
level of Integrity Monitoring on GNSS SIS and 
Reference Stations (RSs).  In the current test-bed, a 
real-time 2-Tiers algorithm has been here operated, 
as it will be reported after. 

Relevant architectural scheme is reported in Fig. 1. The 
LA architecture takes GNSS raw data from SBAS Ground 
Services (e.g. EDAS), and RSs belonging to external 
augmentation networks (external network) to be used for 
densification of a rail backbone network. Raw data are 
gathered through the data Acquisition block and fed into the 
integrity monitoring block. It is in charge of performing RS 
and SIS FDE. The candidate mean is the 2-Tiers algorithm 
[10], able to integrate SBAS RIMS raw data and RS raw data 
for performing the FDE. Relevant integrity parameters (e.g. B-

values, probability of fault of RS, satellites and constellations) 
are calculated by the integrity parameters block. Anomalous 
ionospheric conditions are detected by the local atmospheric 
monitoring block. A generalized architecture, able to cover 
any kind of available high precision system in the future, 
starting from current GBAS (Ground Based Augmentation 
System) toward current Network RTK (Real Time Kinematic) 
and the incoming real-time PPP (Precise Point Positioning), 
has been studied (Fig. 2). With this scope, network 
ambiguities can be solved by the Control Centre. In the future, 
precise orbit and clocks estimation in real-time, as well as 
local ionospheric STEC (Slant Electron Content) estimation 
can be performed for PPP and integrity monitoring issues, 
respectively. A measurement correction component is in 
charge of calculating final corrections and sending them to the 
augmentation processing and messages generation for final 
corrections formatting in standard mode and sending to the 
TALS. GNSS precise ephemeris and clocks will be gathered 
from the IGS sites (SP3 (Standard Product # 3) files). GRSP is 
currently not available. 

 

 
Fig. 1. System Reference Architecture 

 

 
Fig. 2. LA Network 



Standard communication data formats (e.g. RTCM (Radio 
Technical Commission for Maritime Services)) and new 
proposed RTCM messages for integrity parameters messages, 
as well GBAS ones, are used for the communication among 
blocks.  The reference architecture is a full instance able to 
cover any kind of available high precision system in the 
future, starting from current GBAS toward current Network 
RTK and the incoming Real-Time PPP. The LA architecture 
used for the performance analysis is a subset of the full 
architecture. It provides relevant safety-related functions (e.g. 
FDE, integrity parameters, measurement corrections and 
messages generation). They are the basic functions needed for 
implementing high demanding SIL 4 applications in different 
rail operation modes, e.g. SoM and FS and to assist the track 
discrimination.  Then, the fault-tree analysis applied to the 
LDS GNSS-based reference architecture, starting from the 
UNISG Subset-088 specifications on ETCS Level 1 & 2 
([21]), is shown. The initial apportionment of Tolerable 
Hazard Rate (THR) of 2e-9/hr is subdivided explicitly among 
main relevant hazards: Virtual Balise Detection Hazard (1e-
9/hr), Radio Subsystem Hazard (3.3e-10/hr) and Odometry 
Hazard (1e-10/hr). Virtual Balise Detection branch is added as 
a replacement of physical balises and BTM (Balise 
Transmission Module) subsystem. To be noted that the 
communication fault hazard appears at the second level, due to 
the relevance that it assumes for the transmission of 
Augmentation data. At Level 3, the classical equal subdivision 
between trackside and On-Board is obtained. The trackside 
branch at Level 4 includes the GNSS SIS/LA, where a THR of 
4.5e-10/hr has been allocated. Concerning the LA fault, a 
THR of 2e-10/hr is allocated. Following a LA fault analysis 
carried out the RHINOS project [23], such a requirement can 
be met with appropriate integrity monitoring systems. 
Environmental effects are allocated at Level 3, with a relevant 
total THR of 0.5e-9/hr. Among them, multipath allocation is 
2e-10/hr. While ARAIM on-board integration can help in 
multipath rejection, a new mitigation system has to be 
designed for meeting the required THR. Such new system has 
been called Function B. It will be one of the major tasks for 
the future to study such On-Board mitigation techniques. The 
relevant Fault Tree is reported in Fig. 3. 

III. REAL TEST BED AND SIMULATED DATA GENERATION   

The impact of the local effects (multipath, foliage and 
shadowing) on the train position estimation, as calculated by 
the GNSS-based LDS (Location Determination System), 
taking into account the rail requirements, has been verified 
through the use of both real data, collected in a railway test 
environment and synthetic simulated data. Laboratory‐based 
simulation allows conducting testing without the uncertainties 
of field‐testing, by the ability to define and control the whole 
scenario. Real data were collected along the pilot line 
Cagliari-San Gavino railway track in Italy, using train’s on-
board receiver. Beidou, SBAS) and multi-frequency geodetic 
receivers and multipath-resistant choke-ring antennas. 
Augmentation RSs deployed along the route consisted of 
multi-constellation (GPS, GLONASS GALILEO). 

 
Fig. 3. Fault Tree  

These data were used to simulate the shadowing effect in an 
urban railway scenario (equivalent to OBU data in SoM phase 
with reduced satellites visibility), generated by the VIRGILIO 
simulator. The multipath and foliage effects were tested using 
a low-latency, high-rate multi-channel multi-GNSS Spirent 
GSS8000 simulator. It is generating realistic RF signal in 
ultra-high dynamic conditions. All simulation parameters are 
controlled by the SimGen graphical interface [18]. Figure 4 
shows generated signals strength (including multipath echoes), 
train trajectory and skyplot in one of the scenarios created. 
RF signals for GPS (L1 and L2 frequency) and GALILEO (E1 
and E5 frequency) were generated based on the information 
collected along the Cagliari-San Gavino railway track in Italy 
on the 06 April 2016 15:00-16:00 GPS time. A GPS 
constellation matching the one recorded on the day and a fully 
operational GALILEO constellation were simulated. 
Atmospheric and ionospheric conditions were reproduced 
using Spirent build-in models. The observed satellites were 
subject to obstruction and multipath (direct signal and between 
one to three echoes) from the vertical planes, representing 
obstructions on both sides of the train. An additional echo 
channel with fixed offset was applied to the code and carrier 
phase for GPS satellite 24. An additional echo channel with 
Doppler offset was applied to GALILEO satellite 27. An 
advanced simulation of multipath generated by obstructions 
and foliage close to the track, was created using the Spirent's 
mobile multipath model. 
 

 
Fig. 4. SimGen user interface showing scenario setup 



This model allows to define the following characteristics of a 
3D environment: 

• obscuring all satellite signal; 
• open sky; 
• multipath (direct signal and echoes); 
• multipath with blocking the direct signal (only 

echoes). 
Depending on the satellite angle, Rician fading was applied to 
the direct signal, and Rayleigh delay function to the reflected 
one. Rician fading can be estimated from the following 
equation: 

( ) ( ) ( )2
02 exp 1 2Ricianf K K I Kν ν ν ν = − +  (1) 

where K is the elevation dependent constant, representing the 
ratio of direct to reflected signal strength, and I0 is the 0th 
order modified Bessel function of the first kind. This function 
is only applied if the received voltage, relative to the direct 
signal power, is positive. Otherwise, the direct signal is not 
modified [18]. Reflected signals were modelled using the 
Rayleigh fading, consisting of a deterministic mean power 
function, an amplitude noise function (Rayleigh) and a delay 
function. 
The mean power function, in dB, is defined as: 
 

( ) ( )0h hP P dτ τ= −  (2) 
where Ph(0) and d are determined by the user. The Rayleigh 
noise function is defined as 

( ) 22 expRf K Kν ν ν = −   (3) 

and the delay on the echo channel is calculated using 
exponential distribution: 

( )exp

1
expf

b b

τ
τ  = −  

 (4) 

Where b and the function’s upper limit are defined by the user. 
Additionally, each multipath echo were simulated on an 
independent channel, with carrier Doppler offset applied to 
non-primary echoes using following equation: 
 

( ) cosoff ef Bν ν α= +Ψ  (5)  

where B is the initial bias, v is the user velocity, Ψ  is the 

velocity offset conversion factor, and eα  is the satellite 

elevation angle.  
Figure 5 demonstrates a 3D model used in the scenario with 
azimuth of 0 indicating the direction of travel. Rapidly varying 
features above 25 degrees elevation, chosen to match the 
previous scenario, simulate vegetation. Openings, on azimuths 
-30 to 30 and 160 to -160, simulate open environment in the 
direction of the train travel. Train body multipath was not 
simulated. 

IV. PERFORMANCE ANALYSIS 

Tests have been carried out using real GNSS raw data 
registered on board of a Pilot Train in the Cagliari-San Gavino 
track, as well as simulated data. 

 
Fig. 5. 3D visualisation of the obstructions and foliage generated 

multipath 

The ERSAT LA infrastructure, composed by five RSs and a 
Control Centre in Rome (implementing the 2-Tiers integrity 
monitoring), was used for simulating integrity faults and 
providing relevant corrections. The simulation architecture is 
shown in Fig. 6. 
Accuracy and integrity analysis are performed through the 
VIRGILIO simulator. It is a complete multi-constellation 
software simulator developed from RadioLabs for the GNSS 
LDSs for rail. It supports H/W in the loop simulation, and has 
high scalability through distributed simulation in cloud 
environment. The VIRGILIO Simulator Architecture is 
reported in Fig. 7. With its modular design, VIRGILIO is 
transparent to the number and location of processing nodes. It 
can work in two modalities: 

• centralized processing: all the simulated components 
run in the same node; data exchange occurs in 
memory; 

• distributed processing: data exchange between 
modules is allowed also through a network protocol 
(UDP/IP based). Therefore, VIRGILIO can be set up 
with the various components running on different 
nodes. The distribution scheme can be easily adapted 
to the number of nodes, up to a maximum degree of 
distribution with each functional component running 
on a dedicated processing element.  

The two main rail operational phases, SoM, starting from an 
unknown position, and FS have been considered. 
The GRDNet (GNSS R&D Network) Control software has 
been used for LA simulations. It is able to perform real-time 
and post-processing operations for RTK/NRTK and 
implements the 2-Tiers algorithm. 
For the SoM, the AL (Alert Limit) has been set to 3 m, while 
for the FS to 12 m. For meeting the above AL requirement, all 
the analysis for the SoM have been carried out through RTK 
processing. 
A THR of 10-9/h for the whole system (satisfying SIL 4 
requirements) has been imposed for Protection Level (PL) 
calculation and relevant integrity analysis. LA can therefore 
achieve the 4.5*e-10/h THR requirement, as reported in [18].  
Concerning the SoM phase, the parallel track discrimination 
has been carried out through two methods: the track 
constrained algorithm developed in [19] and the classical RTK 
method.  



 
Fig. 6. Performance analysis simulation architecture 

 

Fig. 7. VIRGILIO simulator architecture 

The first method allowed a relevant robustness in track 
discrimination, based on multi-hypothesis analysis through the 
Melbourne-Wubbena raw measurements combination ([19]). 
A very low probability of fault in track discrimination has 
been envisaged in nominal conditions.  
The application of RTK, with simulated data including weak 
multipath conditions, leaded to floating and fixed solutions, 
with full availability is achieved. 
Concerning the FS case, the normal operation analysis, carried 
out through real receiver raw data measurement on the 
Cagliari-San Gavino railway track, reports an availability of 
0.99932 due to the GNSS only.  
The mean position error is in this case of 1 m, with a standard 
deviation of 0.4 m. 
Relevant Results for the nominal case analysis are reported in 
TABLE I.  
Local effects have been investigated through sensitivity 
analysis about shadowing, multipath, and foliage attenuation.  
The impact of shadowing has been analysed in SoM through 
an incrementally increasing cut-off angle with three possible 
levels. For the three cases (light, medium, severe), a full 
availability is estimated, while the position error can be in the 
order of 0.2-0.4m, with a standard deviation ranging from 0.1 
to 0.3m. Also, if not relevant for the integrity performances, a 
high level of shadowing can provide a significant contribution 
to the error budget. 

TABLE I.  TEST CASE RESULTS SUMMARY 

TEST CASE AVAILABILITY MI 

(%) 
NO 

(%) 

NORMAL OPERATION 

(SOM) 
1 0 100 

NORMAL OPERATION 

(FULL SUPERVISION) 
0.99932 0.00 99.93 

 
In the performed tests, the Stanford analysis revealed that till 
32 degrees of shadowing, the SoM safety requirements can 
still be met. 
The impact in terms of integrity is reported in the Stanford 
Plot Fig. 8 for a shadowing angle of 32 deg.  

Raw data with injected multipath errors have been 
generated for the rover receiver, while RSs modeled without 
any interferences. For the scope of reproducing as much as 
possible the real pilot scenario for the whole Cagliari-San 
Gavino rail track, Spirent simulation run with the same model 
of rover and RS receivers. Rover data have been reproduced 
with multipath effect combining vertical plane obstruction and 
reflection. In order to carry out a sensitivity analysis, an 
increasing wall has been placed on both sides of the rail track, 
ranging from 0.5 to 2 m above the antenna height with 
multipath added to two echo channels with fixed attenuation 
and range offset from direct signal. 
The system availability decreases to 0.99735, while the 
percentage of MI (Misleading Information) is in the order of 
6.3%. The induced position error is about of 4.7m, with a 
standard deviation of 2.7m. It confirms the relevant impact of 
multipath on system availability and position accuracy. 
Relevant test configuration and Stanford plots are reported in 
Fig. 9 (the letters indicate the simulated height of the wall 
above the roof of the train for each successive 10 minutes time 
interval). For analysing the effect of foliage attenuation, the 
disturbance of trees added on the top of the wall-generating 
multipath, has been injected into the previous analysis. 
 

 
Fig. 8. Shadowing Effect Stanford Plot  



 
Fig. 9. Multipath Effect Stanford Plot 

In this case, the availability is in the order of 0.99601, while 
the MI percentage increase up to 6.72%, and the epochs when 
the system is in nominal operations reduces to 92.88%. The 
foliage attenuation, together with multipath, as largely 
expected by the GNSS literature and surveying experiences, 
introduces a relevant error in the order of 4, 5 m, with a 
standard deviation of 2.7 m. It is therefore highly 
recommended to choose the location of Virtual Balises in 
areas not highly affected by multipath or characterized by the 
presence of trees around the rail track. Relevant integrity 
analysis results are reported in a Stanford Plot in Fig. 9. 
Relevant performance analysis results are summarised in 
TABLE II.  
 

 
Fig. 10. Multipath and Foliage Attentuation Stanford Plot  

TABLE II.  PERFORMANCE ANALYSIS TEST CASE SUMMARY 

TEST CASE AVAILABILITY MI 

(%) 
NO 

(%) 

URBAN AREA SEVERE 

SHADOWING (START OF 

MISSION) 

 
1 

 
0 

 
100 

URBAN AREA SEVERE 

MULTIPATH (FUL 

SUPERVISION) 0.99735 6.30 93.44 
URBAN AREA SEVERE 

MULTIPATH AND FOLIAGE  

(FULL SUPERVISION) 0.99601 6.72 92.88 

V. CONCLUSIONS 

A GNSS performance analysis in rail operational environment 
has been carried out to investigate the impact of local effects 
in terms of availability, accuracy and integrity of the system.  
A preliminary fault analysis has been carried out, starting from 
relevant ETCS (European Train Control System) 
standardisation documents. The concept of a GNSS-based 
Virtual Balise as well as the definition of AIMN-OBU system 
reference architecture have been shown. A relevant THR (2e-
10/hr) allocated to the local effects (in particular multipath) 
has been derived through the fault-tree analysis applied to the 
reference LDS GNSS-based system architecture.  
Since multipath is the most significant integrity risk to adopt 
GNSS based train localization for rail, and little heritage can 
be derived from the aviation applications, a specific solution 
for rail is needed. Future work is underway as follow up of the 
RHINOS projects where we developed a 2-levels multipath 
detection mechanism. The goal is to predict and mitigate the 
bounded errors arising from the multipath along the railways 
line for minimising the errors of the Virtual Balise position. 
To this aim, innovative techniques based on a-priori 
predictability, intelligent antennas, deep learning and use of 
GNSS independent means are being developed for the 
ERTMS application.  
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