134 research outputs found
Ion impact induced Interatomic Coulombic Decay in neon and argon dimers
We investigate the contribution of Interatomic Coulombic Decay induced by ion
impact in neon and argon dimers (Ne and Ar) to the production of low
energy electrons. Our experiments cover a broad range of perturbation strengths
and reaction channels. We use 11.37 MeV/u S, 0.125 MeV/u He,
0.1625 MeV/u He and 0.150 MeV/u He as projectiles and study
ionization, single and double electron transfer to the projectile as well as
projectile electron loss processes. The application of a COLTRIMS reaction
microscope enables us to retrieve the three-dimensional momentum vectors of the
ion pairs of the fragmenting dimer into Ne/Ne and
Ar/Ar (q = 1, 2, 3) in coincidence with at least one emitted
electron
Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements
Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback
Design and Evaluation of a Fiber-Optic Grip Force Sensor with Compliant 3D-Printable Structure for (f)MRI Applications
Grip force sensors compatible with magnetic resonance imaging (MRI) are used in human motor control and decision-making research, providing objective and sensitive behavioral outcome measures. Commercial sensors are expensive, cover limited force ranges, rely on pneumatic force transmission that cannot detect fast force changes, or are electrically active, which increases the risk of electromagnetic interference. We present the design and evaluation of a low-cost, 3D-printed, inherently MRI-compatible grip force sensor based on a commercial intensity-based fiber-optic sensor. A compliant monobloc structure with flexible hinges transduces grip force to a linear displacement captured by the fiber-optic sensor. The structure can easily be adapted for different force ranges by changing the hinge thickness. A prototype designed for forces up to 800 N was manufactured and showed a highly linear behavior (nonlinearity of 2.37%) and an accuracy of 1.57% in a range between zero and 500 N. It can be printed and assembled within one day and for less than $300. Accurate performance was confirmed, both inside and outside a 3 T MRI scanner within a pilot study. Given its simple design allowing for customization of sensing properties and ergonomics for different applications and requirements, the proposed grip force handle offers researchers a valuable scientific tool
Auger decay and subsequent fragmentation pathways of ethylene following K-shell ionization
Citation: Gaire, B., Haxton, D. J., Sturm, F. P., Williams, J., Gatton, A., Bocharova, I., . . . Weber, T. (2015). Auger decay and subsequent fragmentation pathways of ethylene following K-shell ionization. Physical Review A, 92(1), 13. doi:10.1103/PhysRevA.92.013408The fragmentation pathways and dynamics of ethylene molecules after core ionization are explored using coincident measurements of the Auger electron and fragment ions by employing the cold target recoil-ion momentum spectroscopy method. The influence of several factors on the dynamics and kinematics of the dissociation is studied. These include propensity rules, ionization mechanisms, symmetry of the orbitals from which the Auger electrons originate, multiple scattering, conical intersections, interference, and possible core-hole localization for the double ionization of this polyatomic molecule. Energy correlation maps allow probing the multidimensional potential energy surfaces and, in combination with our multiconfiguration self-consistent field calculations, identifying the populated electronic states of the dissociating dication. The measured angular distributions of the Auger electrons in the molecular frame further support and augment these assignments. The deprotonation and molecular hydrogen ion elimination channels show a nearly isotropic Auger electron angular distribution with a small elongation along the direction perpendicular to the molecular axis. For the symmetric breakup the angular distributions show a clear influence of multiple scattering on the outgoing electrons. The lowest kinetic energy release feature of the symmetric breakup channel displays a fingerprint of entangled Auger and photoelectron motion in the angular emission pattern identifying this transition as an excellent candidate to probe core-hole localization at a conical intersection of a polyatomic molecule.Additional Authors: Landers, A. L.;Belkacem, A.;Dorner, R.;Weber, T
Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression
Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase–dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to β1 integrin ligation or αCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics
Tetanus toxin Hc fragment induces the formation of ceramide platforms and protects neuronal cells against oxidative stress
Tetanus toxin (TeTx) is the protein, synthesized by the anaerobic bacteria Clostridium tetani, which causes tetanus disease. TeTx gains entry into target cells by means of its interaction with lipid rafts, which are membrane domains enriched in sphingomyelin and cholesterol. However, the exact mechanism of host membrane binding remains to be fully established. In the present study we used the recombinant carboxyl terminal fragment from TeTx (Hc-TeTx), the domain responsible for target neuron binding, showing that Hc-TeTx induces a moderate but rapid and sustained increase in the ceramide/sphingomyelin ratio in primary cultures of cerebellar granule neurons and in NGF-differentiated PC12 cells, as well as induces the formation of ceramide platforms in the plasma membrane. The mentioned increase is due to the promotion of neutral sphingomyelinase activity and not to the de novo synthesis, since GW4869, a specific neutral sphingomyelinase inhibitor, prevents neutral sphingomyelinase activity increase and formation of ceramide platforms. Moreover, neutral sphingomyelinase inhibition with GW4869 prevents Hc-TeTx-triggered signaling (Akt phosphorylation), as well as the protective effect of Hc-TeTx on PC12 cells subjected to oxidative stress, while siRNA directed against nSM2 prevents protection by Hc-TeTx of NSC-34 cells against oxidative insult. Finally, neutral sphingomyelinase activity seems not to be related with the internalization of Hc-TeTx into PC12 cells. Thus, the presented data shed light on the mechanisms triggered by TeTx after membrane binding, which could be related with the events leading to the neuroprotective action exerted by the Hc-TeTx fragment
- …