584 research outputs found
Patellofemoral joint geometry and osteoarthritis features 3–10 years after knee injury compared with uninjured knees
In this cross-sectional study, we compared patellofemoral geometry in individuals with a youth-sport-related intra-articular knee injury to uninjured individuals, and the association between patellofemoral geometry and magnetic resonance imaging (MRI)-defined osteoarthritis (OA) features. In the Youth Prevention of Early OA (PrE-OA) cohort, we assessed 10 patellofemoral geometry measures in individuals 3–10 years following injury compared with uninjured individuals of similar age, sex, and sport, using mixed effects linear regression. We also dichotomized geometry to identify extreme (>1.96 standard deviations) features and assessed likelihood of having extreme values using Poisson regression. Finally, we evaluated the associations between patellofemoral geometry with MRI-defined OA features using restricted cubic spline regression. Mean patellofemoral geometry did not differ substantially between groups. However, compared with uninjured individuals, injured individuals were more likely to have extremely large sulcus angle (prevalence ratio [PR] 3.9 [95% confidence interval, CI: 2.3, 6.6]), and shallow lateral trochlear inclination (PR 4.3 (1.1, 17.9)) and trochlear depth (PR 5.3 (1.6, 17.4)). In both groups, high bisect offset (PR 1.7 [1.3, 2.1]) and sulcus angle (PR 4.0 [2.3, 7.0]) were associated with cartilage lesion, and most geometry measures were associated with at least one structural feature, especially cartilage lesions and osteophytes. We observed no interaction between geometry and injury. Certain patellofemoral geometry features are correlated with higher prevalence of structural lesions compared with injury alone, 3–10 years following knee injury. Hypotheses generated in this study, once further evaluated, could contribute to identifying higher-risk individuals who may benefit from targeted treatment aimed at preventing posttraumatic OA.</p
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Recommended from our members
Gas-Particle Partitioning of Atmospheric Hg(II) and Its Effect on Global Mercury Deposition
Atmospheric deposition of Hg(II) represents a major input of mercury to surface environments. The phase of Hg(II) (gas or particle) has important implications for deposition. We use long-term observations of reactive gaseous mercury (RGM, the gaseous component of Hg(II)), particle-bound mercury (PBM, the particulate component of Hg(II)), fine particulate matter (PM2.5), and temperature (T) at five sites in North America to derive an empirical gas-particle partitioning relationship log10(K−1) = (10±1)–(2500±300)/T where K = (PBM/PM2.5)/RGM with PBM and RGM in common mixing ratio units, PM2.5 in μg m−3, and T in K. This relationship is within the range of previous work but is based on far more extensive data from multiple sites. We implement this empirical relationship in the GEOS-Chem global 3-D Hg model to partition Hg(II) between the gas and particle phases. The resulting gas-phase fraction of Hg(II) ranges from over 90 % in warm air with little aerosol to less than 10 % in cold air with high aerosol. Hg deposition to high latitudes increases because of more efficient scavenging of particulate Hg(II) by precipitating snow. Model comparison to Hg observations at the North American surface sites suggests that subsidence from the free troposphere (warm air, low aerosol) is a major factor driving the seasonality of RGM, while elevated PBM is mostly associated with high aerosol loads. Simulation of RGM and PBM at these sites is improved by including fast in-plume reduction of Hg(II) emitted from coal combustion and by assuming that anthropogenic particulate Hg(p) behaves as semi-volatile Hg(II) rather than as a refractory particulate component. We improve the simulation of Hg wet deposition fluxes in the US relative to a previous version of GEOS-Chem; this largely reflects independent improvement of the washout algorithm. The observed wintertime minimum in wet deposition fluxes is attributed to inefficient snow scavenging of gas-phase Hg(II).Earth and Planetary SciencesEngineering and Applied Science
Directed evolution of recombinase specificity by split gene reassembly
The engineering of new enzymes that efficiently and specifically modify DNA sequences is necessary for the development of enhanced gene therapies and genetic studies. To address this need, we developed a robust strategy for evolving site-specific recombinases with novel substrate specificities. In this system, recombinase variants are selected for activity on new substrates based on enzyme-mediated reassembly of the gene encoding β-lactamase that confers ampicillin resistance to Escherichia coli. This stringent evolution method was used to alter the specificities of catalytic domains in the context of a modular zinc finger-recombinase fusion protein. Gene reassembly was detectable over several orders of magnitude, which allowed for tunable selectivity and exceptional sensitivity. Engineered recombinases were evolved to react with sequences from the human genome with only three rounds of selection. Many of the evolved residues, selected from a randomly-mutated library, were conserved among other members of this family of recombinases. This enhanced evolution system will translate recombinase engineering and genome editing into a practical and expedient endeavor for academic, industrial and clinical applications
Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association
The identification of multiple signals at individual loci could explain additional phenotypic variance (‘missing heritability’) of common traits, and help identify causal genes. We examined gene expression levels as a model trait because of the large number of strong genetic effects acting in cis. Using expression profiles from 613 individuals, we performed genome-wide single nucleotide polymorphism (SNP) analyses to identify cis-expression quantitative trait loci (eQTLs), and conditional analysis to identify second signals. We examined patterns of association when accounting for multiple SNPs at a locus and when including additional SNPs from the 1000 Genomes Project. We identified 1298 cis-eQTLs at an approximate false discovery rate 0.01, of which 118 (9%) showed evidence of a second independent signal. For this subset of 118 traits, accounting for two signals resulted in an average 31% increase in phenotypic variance explained (Wilcoxon P< 0.0001). The association of SNPs with cis gene expression could increase, stay similar or decrease in significance when accounting for linkage disequilibrium with second signals at the same locus. Pairs of SNPs increasing in significance tended to have gene expression increasing alleles on opposite haplotypes, whereas pairs of SNPs decreasing in significance tended to have gene expression increasing alleles on the same haplotypes. Adding data from the 1000 Genomes Project showed that apparently independent signals could be potentially explained by a single association signal. Our results show that accounting for multiple variants at a locus will increase the variance explained in a substantial fraction of loci, but that allelic heterogeneity will be difficult to define without resequencing loci and functional work
Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence Quantitation
ABSTRACT
PURPOSE: Depilation-induced skin pigmentation in C57Bl/6 mice is a known occurrence, and presents a unique problem for quantitative optical imaging of small animals, especially for bioluminescence. The work reported here quantitatively investigated the optical attenuation of bioluminescent light due to melanin pigmentation in the skin of transgenic C57B1/6 mice, modified such that luciferase expression is under the transcription control of a physiologically and pharmacologically inducible gene.
PROCEDURE: Both in vivo and ex vivo experiments were performed to track bioluminescence signal attenuation through different stages of the mouse hair growth cycle. Simultaneous reflectance measurements were collected in vivo to estimate melanin levels.
RESULTS: Biological variability of skin pigmentation was found to dramatically affect collected bioluminescent signal emerging through the skin of the mice. When compared to signal through skin with no pigmentation, the signal through highly-pigmented skin was attenuated an average of 90%. Correlation of reflectance signals to bioluminescence signal loss forms the basis of the proposed correction method. We observed, however, that variability in tissue composition, which results in inconsistent reflectance spectra, limits the accuracy of the correction method but can be improved by incorporating more complex analysis.
CONCLUSION: Skin pigmentation is a significant variable in bioluminescent imaging, and should be considered in experimental design and implementation for longitudinal studies, and especially when sensitivity to small signal changes, or differences among animals, is required
Does Time Since Immigration Modify Neighborhood Deprivation Gradients in Preterm Birth? A Multilevel Analysis
Immigrants’ health is jointly influenced by their pre- and post-migration exposures, but how these two influences operate with increasing duration of residence has not been well-researched. We aimed to examine how the influence of maternal country of birth and neighborhood deprivation effects, if any, change over time since migration and how neighborhood effects among immigrants compare with those observed in the Canadian-born population. Birth data from Ontario hospital records (2002–2007) were linked with an official Canadian immigration database (1985–2000). The outcome measure was preterm birth. Neighborhoods were ranked according to a neighborhood deprivation index developed for Canadian urban areas and collapsed into tertiles of approximately equal size. Time since immigration was measured from the date of arrival to Canada to the date of delivery, ranging from 1 to 22 years. We used cross-classified random effect models to simultaneously account for the membership of births (N = 83,233) to urban neighborhoods (N = 1,801) and maternal countries of birth (N = 168). There were no differences in preterm birth between neighborhood deprivation tertiles among immigrants with less than 15 years of residence. Among immigrants with 15 years of stay or more, the adjusted absolute risk difference (ARD%, 95% confidence interval) between high-deprived (tertile 3) and low-deprived (tertile 1) neighborhoods was 1.86 (0.68, 2.98), while the ARD% observed among the Canadian-born (N = 314,237) was 1.34 (1.11, 1.57). Time since migration modifies the neighborhood deprivation gradient in preterm birth among immigrants living in Ontario cities. Immigrants reached the level of inequalities in preterm birth observed at the neighborhood level among the Canadian-born after 14 years of stay, but neighborhoods did not influence preterm birth among more recent immigrants, for whom the maternal country of birth was more predictive of preterm birth
Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
V.F. acknowledges a UQ Postdoctoral Fellowship. This work was supported by the Australian Research Council Grant DP110100539. The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (The University of Queensland). The Ghent University Special Research Fund (BOF) is acknowledged for the postdoctoral grant of M.N.B
Keratin 8 expression in colon cancer associates with low faecal butyrate levels
<p>Abstract</p> <p>Background</p> <p>Butyrate has been implicated in the mechanistic basis of the prevention of colorectal cancer by dietary fibre. Numerous in vitro studies have shown that butyrate regulates cell cycle and cell death. More recently we have shown that butyrate also regulates the integrity of the intermediate filament (IF) cytoskeleton <it>in vitro</it>. These and other data suggest a link between the role of diet and the implication of a central role for the keratin 8 (K8) as guardian of the colorectal epithelium.</p> <p>Methods</p> <p>In this cross-sectional study possible links between butyrate levels, field effects and keratin expression in cancer were addressed directly by analysing how levels of expression of the IF protein K8 in tumours, in adjacent fields and at a distant landmark site may be affected by the level of butyrate in the colon microenvironment. An immunohistochemical scoring protocol for K8 was developed and applied to samples, findings were further tested by immunoblotting.</p> <p>Results</p> <p>Levels of K8 in colorectal tumours are lower in subjects with higher levels of faecal butyrate. Immunoblotting supported this finding.Although there were no significant relationships with butyrate on the non-tumour tissues, there was a consistent trend in all measures of extent or intensity of staining towards a reduction in expression with elevated butyrate, consistent with the inverse association in tumours.</p> <p>Conclusions</p> <p>The data suggest that butyrate may associate with down-regulation of the expression of K8 in the cancerized colon. If further validated these findings may suggest the chemopreventive value of butyrate is limited to early stage carcinogenesis as low K8 expression is associated with a poor prognosis.</p
- …