368 research outputs found

    Fungal Sex: The Basidiomycota

    Get PDF
    International audienc

    diseases with ecological speciation

    Get PDF
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit

    Within-host competitive exclusion among species of the anther smut pathogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host individuals represent an arena in which pathogens compete for resources and transmission opportunities, with major implications for the evolution of virulence and the structure of populations. Studies to date have focused on competitive interactions within pathogen species, and the level of antagonism tends to increase with the genetic distance between competitors. Anther-smut fungi, in the genus <it>Microbotryum</it>, have emerged as a tractable model for within-host competition. Here, using two pathogen species that are frequently found in sympatry, we investigated whether the antagonism seen among genotypes of the same species cascades up to influence competition among pathogen species.</p> <p>Results</p> <p>Sequential inoculation of hosts showed that a resident infection most often excludes a challenging pathogen genotype, which is consistent with prior studies. However, the challenging pathogen was significantly more likely to invade the already-infected host if the resident infection was a conspecific genotype compared to challenges involving a closely related species. Moreover, when inter-specific co-infection occurred, the pathogens were highly segregated within the host, in contrast to intra-specific co-infection.</p> <p>Conclusion</p> <p>We show evidence that competitive exclusion during infection can be greater among closely related pathogen species than among genotypes within species. This pattern follows from prior studies demonstrating that genetic distance and antagonistic interactions are positively correlated in <it>Microbotryum</it>. Fungal vegetative incompatibility is a likely mechanism of direct competitive interference, and has been shown in some fungi to be effective both within and across species boundaries. For systems where related pathogen species frequently co-occur in the same host populations, these competitive dynamics may substantially impact the spatial segregation of pathogen species.</p

    Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophiocordyceps unilateralis)

    Get PDF
    International audienceThe identification and delimitation of species boundaries are essential for understanding speciation and adaptation processes and for the management of biodiversity as well as development for applications. Ophiocordyceps unilateralis sensu lato is a complex of fungal pathogens parasitizing Formicine ants, inducing zombie behaviors in their hosts. Previous taxonomic works with limited numbers of samples and markers led to the "one ant-one fun-gus" paradigm, resulting in the use of ant species as a proxy for fungal identification. Here, a population genomics study with sampling on three ant species across Thailand supported the existence of host-specific species in O. unilateralis s.l. with no footprints of long term introgression despite occasional host shifts and first-generation hybrids. We further detected genetic clusters within the previously delimited fungal species, with each little footprints of recombination, suggesting high levels of inbreeding. The clusters within each of O. camponoti-leonardi and O. camponoti-saundersi were supported by differentiation throughout the genome, suggesting they may constitute further cryptic species parasitizing the same host, challenging the one ant-one fungus paradigm. These genetic clusters had different geographical ranges, supporting different biogeographic influences between the north/center and the south of Thailand, reinforcing the scenario in which Thailand endured compartmentation during the latest Pleistocene glacial cycles

    Indexing labeled sequences

    Get PDF
    International audienceBackground: Labels are a way to add some information on a text, such as functional annotations such as genes on a DNA sequences. V(D)J recombinations are DNA recombinations involving two or three short genes in lymphocytes. Sequencing this short region (500 bp or less) produces labeled sequences and brings insight in the lymphocyte repertoire for onco-hematology or immunology studies. Methods: We present two indexes for a text with non-overlapping labels. They store the text in a Burrows–Wheeler transform (BWT) and a compressed label sequence in a Wavelet Tree. The label sequence is taken in the order of the text (TL-index) or in the order of the BWT (TL-BW-index). Both indexes need a space related to the entropy of the labeled text. Results: These indexes allow efficient text–label queries to count and find labeled patterns. The TL-BW-index has an overhead on simple label queries but is very efficient on combined pattern–label queries. We implemented the indexes in C++ and compared them against a baseline solution on pseudo-random as well as on V(D)J labeled texts. Discussion: New indexes such as the ones we proposed improve the way we index and query labeled texts as, for instance, lymphocyte repertoire for hematological and immunological studies

    Allee effects in ants

    Get PDF
    Summary 1. Allee effects occur when the aggregation of individuals result in mutually beneficial intraspecific interactions whereby individual fitness, or per capita growth rate, increases with the number of individuals. Allee effects are common in social species due to their cooperative behaviours, such as breeding, feeding or defence. Allee effects have important implications for many aspects of basic and applied ecology. Over the past decades, the study of Allee effects has influenced population dynamics, community ecology, endangered species management and invasion biology. 2. Despite the fact that cooperation is the basis of their social structure, Allee effects have received little attention among eusocial insects. Extreme cooperation is common, and reproductive specialization of individuals occurs due to division of labour. These life-history traits suggest that the potential contribution of each caste to reproduction and survival may be differential and nonadditive. 3. We studied Allee effects in the invasive Argentine ant (Linepithema humile). In this species, many queens and workers are present in colonies, which allowed us to explore the differential effects of castes on the presence of Allee effects. In the laboratory, we measured brood production and individual survival in experimental colonies that differed in the initial numbers of queens and workers. 4. Our results highlight the differential effect of queens and workers on survival and productivity. We found three positive density-dependent relationships indicative of component Allee effects at the colony level: both workers and queens had a positive effect on the productivity of the other caste, and queens had a positive effect on worker survivorship. 5. Our experimental results suggest a potential positive feedback between worker and queen abundance, which may have contributed to the evolution of large colony sizes. Our study provides the first evidence of Allee effects in eusocial insects and highlights the need to consider castes separately in population dynamics. Division of labour and differential reproductive rates are factors that should be integrated into the study of Allee effects

    The Minisatellite MSB1, in the Fungus Botrytis cinerea, Probably Mutates by Slippage

    Get PDF
    A minisatellite was identified in the intron of the ATP synthase of the filamentous fungus Botrytis cinerea, and it was named MSB1. This is the second fungal minisatellite described to date. Its 37-bp repeat unit is AT-rich, and it is found at only one locus in the genome. The introns of 47 isolates of Botrytis species were sequenced. The number of tandem repeats varied only from 5 to 11, but there were many repeat variants. The structure of MSB1 is peculiar: the variants are in the same physical order in all individuals, and this order follows the most parsimonious tree. These original characteristics, together with a total lack of recombination between alleles of the flanking regions, suggest that MSB1 probably mutates by slippage. MSB1 was found in the intron of the ATP synthase of all of the Botrytis species analyzed, but the repeat unit was not found in any other genus examined, including Sclerotinia, which is the genus closest to Botrytis
    corecore