519 research outputs found

    SARCS strong lensing galaxy groups: I - optical, weak lensing, and scaling laws

    Full text link
    We present the weak lensing and optical analysis of the SL2S-ARCS (SARCS) sample of strong lens candidates. The sample is based on the Strong Lensing Legacy Survey (SL2S), a systematic search of strong lensing systems in the photometric Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The SARCS sample focuses on arc-like features and is designed to contain mostly galaxy groups. We briefly present the weak lensing methodology that we use to estimate the mass of the SARCS objects. Among 126 candidates, we obtain a weak lensing detection for 89 objects with velocity dispersions of the Singular Isothermal Sphere mass model ranging from 350 to 1000 km/s with an average value of 600km/s, corresponding to a rich galaxy group (or poor cluster). From the galaxies belonging to the bright end of the group's red sequence (M_i<-21), we derive the optical properties of the SARCS candidates. We obtain typical richnesses of N=5-15 galaxies and optical luminosities of L=0.5-1.5e+12 Lsol (within a radius of 0.5 Mpc). We use these galaxies to compute luminosity density maps, from which a morphological classification reveals that a large fraction of the sample are groups with a complex light distribution, either elliptical or multimodal, suggesting that these objects are dynamically young structures. We finally combine the lensing and optical analyses to draw a sample of 80 most secure group candidates, i.e. weak lensing detection and over-density at the lens position in the luminosity map, to remove false detections and galaxy-scale systems from the initial sample. We use this reduced sample to probe the optical scaling relations in combination with a sample of massive galaxy clusters. We detect the expected correlations over the probed range in mass with a typical scatter of 25% in the SIS velocity dispersion at a given richness or luminosity, making these scaling laws interesting mass proxie

    Applying Magnetized Accretion-Ejection Models to Microquasars: a preliminary step

    Full text link
    We present in this proceeding some aspects of a model that should explain the spectral state changes observed in microquasars. In this model, ejection is assumed to take place only in the innermost disc region where a large scale magnetic field is anchored. Then, in opposite to conventional ADAF models, the accretion energy can be efficiently converted in ejection and not advected inside the horizon. We propose that changes of the disc physical state (e.g. transition from optically thick to optically thin states) can strongly modify the magnetic accretion-ejection structure resulting in the spectral variability. After a short description of our scenario, we give some details concerning the dynamically self-consistent magnetized accretion-ejection model used in our computation. We also present some preliminary results of spectral energy distribution.Comment: Proceeding of the fith Microquasar Workshop, June 7 - 13, 2004, Beijing, China. Accepted for publication in the Chinese Journal of Astronomy and Astrophysic

    Characterizing SL2S galaxy groups using the Einstein radius

    Full text link
    We analyzed the Einstein radius, θE\theta_E, in our sample of SL2S galaxy groups, and compared it with RAR_A (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile (θE,I\theta_{E,I}), 2.- a strong lensing analytical method (θE,II\theta_{E,II}) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling (θE,III\theta_{E,III}) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, RAR_A was analyzed as a function of redshift zz to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between θE\theta_{E} and RAR_A, but with large scatter. We estimate θE,I\theta_{E,I} = (2.2 ±\pm 0.9) + (0.7 ±\pm 0.2)RAR_A, θE,II\theta_{E,II} = (0.4 ±\pm 1.5) + (1.1 ±\pm 0.4)RAR_A, and θE,III\theta_{E,III} = (0.4 ±\pm 1.5) + (0.9 ±\pm 0.3)RAR_A for each method respectively. We found a weak evidence of anti-correlation between RAR_A and zz, with LogRAR_A = (0.58±\pm0.06) - (0.04±\pm0.1)zz, suggesting a possible evolution of the Einstein radius with zz, as reported previously by other authors. Our results also show that RAR_A is correlated with L and N (more luminous and richer groups have greater RAR_A), and a possible correlation between RAR_A and the N/L ratio. Our analysis indicates that RAR_A is correlated with θE\theta_E in our sample, making RAR_A useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with zz.Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte

    Studying the X-ray hysteresis in GX 339-4: the disc and iron line over one decade

    Full text link
    We report on a comprehensive and consistent investigation into the X-ray emission from GX 339-4. All public observations in the 11 year RXTE archive were analysed. Three different types of model - single powerlaw, broken powerlaw and a disc + powerlaw - were fitted to investigate the evolution of the disc, along with a fixed gaussian component at 6.4 keV to investigate any iron line in the spectrum. We show that the relative variation in flux and X-ray colour between the two best sampled outbursts are very similar. The decay of the disc temperature during the outburst is clearly seen in the soft state. The expected decay is S_Disc \propto T^4; we measure T^4.75\pm0.23. This implies that the inner disc radius is approximately constant in the soft state. We also show a significant anti-correlation between the iron line significant width and the X-ray flux in the soft state while in the hard state the EW is independent of the flux. This results in hysteresis in the relation between X-ray flux and both line flux and EW. To compare the X-ray binary outburst to the behaviour seen in AGN, we construct a Disc Fraction Luminosity Diagram for GX 339-4, the first for an X-ray binary. The shape qualitatively matches that produced for AGN. Linking this with the radio emission from GX 339-4 the change in radio spectrum between the disc and power-law dominated states is clearly visible.Comment: Accepted for publication in MNRAS, 20 pages, 17 figures. For high-res version see http://www.astro.soton.ac.uk/~r.j.dunn/publications.htm

    The XMM/BeppoSAX observation of Mkn 841

    Full text link
    Mkn 841 has been observed simultaneously by XMM and BeppoSAX in January 2001. Due to operational contingency, the 30ks XMM observation was split into two parts, separated by about 15 hours. We first report the presence of a narrow iron line which appears to be rapidly variable between the two pointings, requiring a non-standard interpretation. We then focus on the analysis of the broad band (0.3-200 keV) continuum using the XMM/EPIC, RGS and SAX/PDS data. The Mkn 841 spectrum is well fitted by a comptonization model in a geometry more photon-fed than a simple slab geometry above a passive disk. It presents a relatively large reflection (R>2) which does not agree with an apparently weak iron line. It also show the presence of a strong soft excess wellfitted by a comptonized spectrum in a cool plasma, suggesting the presence of a multi-temperature corona.Comment: 4 pages, 5 figures. Proc. of the meeting: "The Restless High-Energy Universe" (Amsterdam, The Netherlands), E.P.J. van den Heuvel, J.J.M. in 't Zand, and R.A.M.J. Wijers Ed

    Probing the Slope of Cluster Mass Profile with Gravitational Einstein Rings: Application to Abell 1689

    Get PDF
    The strong lensing modelling of gravitational ``rings'' formed around massive galaxies is sensitive to the amplitude of the external shear and convergence produced by nearby mass condensations. In current wide field surveys, it is now possible to find out a large number of rings, typically 10 gravitational rings per square degree. We propose here, to systematically study gravitational rings around galaxy clusters to probe the cluster mass profile beyond the cluster strong lensing regions. For cluster of galaxies with multiple arc systems, we show that rings found at various distances from the cluster centre can improve the modelling by constraining the slope of the cluster mass profile. We outline the principle of the method with simple numerical simulations and we apply it to 3 rings discovered recently in Abell~1689. In particular, the lens modelling of the 3 rings confirms that the cluster is bimodal, and favours a slope of the mass profile steeper than isothermal at a cluster radius \sim 300 \kpc. These results are compared with previous lens modelling of Abell~1689 including weak lensing analysis. Because of the difficulty arising from the complex mass distribution in Abell~1689, we argue that the ring method will be better implemented on simpler and relaxed clusters.Comment: Accepted for publication in MNRAS. Substantial modification after referee's repor

    Discovery of a new INTEGRAL source: IGR J19140+0951

    Full text link
    IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the INTEGRAL satellite in March 2003. We report the details of the discovery, using an improved position for the analysis. We have performed a simultaneous study of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two different states. From the results of our analysis we propose that IGR J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A

    A community based algorithm for deriving users' profiles from egocentrics networks: experiment on Facebook and DBLP

    Get PDF
    International audienceNowadays, social networks are more and more widely used as a solution for enriching users’ profiles in systems such as recommender systems or personalized systems. For an unknown user’s interest, the user’s social network can be a meaningful data source for deriving that interest. However, in the literature very few techniques are designed to meet this solution. Existing techniques usually focus on people individually selected in the user’s social network and strongly depend on each author’s objective. To improve these techniques, we propose using a community-based algorithm that is applied to a part of the user’s social network (egocentric network) and that derives a user social profile that can be reused for any purpose (e.g., personalization, recommendation). We compute weighted user’s interests from these communities by considering their semantics (interests related to communities) and their structural measures (e.g., centrality measures) in the egocentric network graph. A first experiment conducted in Facebook demonstrates the usefulness of this technique compared to individual-based techniques and the influence of structural measures (related to communities) on the quality of derived profiles. A second experiment on DBLP and the author’s social network Mendeley confirms the results obtained on Facebook and shows the influence of the density of egocentrics network on the quality of results
    • …
    corecore