631 research outputs found
Local Popularity and Time in top-N Recommendation
Items popularity is a strong signal in recommendation algorithms. It strongly
affects collaborative filtering approaches and it has been proven to be a very
good baseline in terms of results accuracy. Even though we miss an actual
personalization, global popularity can be effectively used to recommend items
to users. In this paper we introduce the idea of a time-aware personalized
popularity in recommender systems by considering both items popularity among
neighbors and how it changes over time. An experimental evaluation shows a
highly competitive behavior of the proposed approach, compared to state of the
art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page
Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback
Albeit, the implicit feedback based recommendation problem - when only the
user history is available but there are no ratings - is the most typical
setting in real-world applications, it is much less researched than the
explicit feedback case. State-of-the-art algorithms that are efficient on the
explicit case cannot be straightforwardly transformed to the implicit case if
scalability should be maintained. There are few if any implicit feedback
benchmark datasets, therefore new ideas are usually experimented on explicit
benchmarks. In this paper, we propose a generic context-aware implicit feedback
recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor
factorization learning method that scales linearly with the number of non-zero
elements in the tensor. The method also allows us to incorporate diverse
context information into the model while maintaining its computational
efficiency. In particular, we present two such context-aware implementation
variants of iTALS. The first incorporates seasonality and enables to
distinguish user behavior in different time intervals. The other views the user
history as sequential information and has the ability to recognize usage
pattern typical to certain group of items, e.g. to automatically tell apart
product types or categories that are typically purchased repetitively
(collectibles, grocery goods) or once (household appliances). Experiments
performed on three implicit datasets (two proprietary ones and an implicit
variant of the Netflix dataset) show that by integrating context-aware
information with our factorization framework into the state-of-the-art implicit
recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012,
Bristol, U
A contextual modeling approach for model-based recommender systems
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40643-0_5Proceedings of 15th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2013, Madrid, Spain, September 17-20, 2013.In this paper we present a contextual modeling approach for model-based recommender systems that integrates and exploits both user preferences and contextual signals in a common vector space. Differently to previous work, we conduct a user study acquiring and analyzing a variety of realistic contextual signals associated to user preferences in several domains. Moreover, we report empirical results evaluating our approach in the movie and music domains, which show that enhancing model-based recommender systems with time, location and social companion information improves the accuracy of generated recommendations
Context-aware movie recommendations: An empirical comparison of pre-filtering, post-filtering and contextual modeling approaches
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39878-0_13Proceedings of 14th International Conference, EC-Web 2013, Prague, Czech Republic, August 27-28, 2013.Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain.This work was supported by the Spanish Government
(TIN2011-28538-C02) and the Regional Government of Madrid (S2009TIC-1542
A Domain-Decomposed Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries
Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner
A personalized and context-aware news offer for mobile devices
For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer
Synthetic sequence generator for recommender systems - memory biased random walk on sequence multilayer network
Personalized recommender systems rely on each user's personal usage data in
the system, in order to assist in decision making. However, privacy policies
protecting users' rights prevent these highly personal data from being publicly
available to a wider researcher audience. In this work, we propose a memory
biased random walk model on multilayer sequence network, as a generator of
synthetic sequential data for recommender systems. We demonstrate the
applicability of the synthetic data in training recommender system models for
cases when privacy policies restrict clickstream publishing.Comment: The new updated version of the pape
Predicting your next OLAP query based on recent analytical sessions
International audienceIn Business Intelligence systems, users interact with data warehouses by formulating OLAP queries aimed at exploring multidimensional data cubes. Being able to predict the most likely next queries would provide a way to recommend interesting queries to users on the one hand, and could improve the efficiency of OLAP sessions on the other. In particular, query recommendation would proactively guide users in data exploration and improve the quality of their interactive experience. In this paper, we propose a framework to predict the most likely next query and recommend this to the user. Our framework relies on a probabilistic user behavior model built by analyzing previous OLAP sessions and exploiting a query similarity metric. To gain insight in the recommendation precision and on what parameters it depends, we evaluate our approach using different quality assessments
Contextual adaptative interfaces for Industry 4.0
[EN] Information technologies are intrinsically connected to the manufacturing processes, with more data generated each second. To efficiently operate machines, users must sort out information that is relevant to them in specific moments and contexts. In this paper, we propose an architecture that combines context – e.g. location, type of order, available assets, previous actions
– with information established through user stereotypes
- …