Items popularity is a strong signal in recommendation algorithms. It strongly
affects collaborative filtering approaches and it has been proven to be a very
good baseline in terms of results accuracy. Even though we miss an actual
personalization, global popularity can be effectively used to recommend items
to users. In this paper we introduce the idea of a time-aware personalized
popularity in recommender systems by considering both items popularity among
neighbors and how it changes over time. An experimental evaluation shows a
highly competitive behavior of the proposed approach, compared to state of the
art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page